the engineering and scientific software series

86/PC
experts—PL/M-86

Compiler and Language
Reference Guide

Caine, Farber & Warren Point
Gordon, Inc. International Limited

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure of the software described herein is governed by the terms
of a license agreement or, in the absence of an agreement, is subject to restrictions stated
in paragraph [b)(3)(B) of the Rights in Technical Data and Computer Soflware clause in
DAR 7-104.9(a) or in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer
Software clause in FAR 52.227-7013, as applicable,

Comments or questions relating to this manual or to the subject software are welcomed
and should be addressed to:

Caine, Farber & Gordon, Inc. Warren Point International Limited
1010 East Union Street Babbage Road, Stevenage
Pasadena, CA 91106 Hertfordshire SG1 2EQ

USA ENGLAND

Tel: {818) 449-3070 Tel: Stevenage (0438) 316311
Telex: 295316 CFG UR Telex: 826255 DBDS G

ISBN 1-55714-008-1
Order Number: 2301-50

First printing, March, 1988

Copyright © 1982, 1984, 1986, 1988 by Caine, Farber & Gordon, Inc.
All Rights Reserved.

86/PC and 86/PL are trademarks of Caine, Farber & Gordon, Inc. Experts-PL/M and
Experts-PL/M-86 are trademarks of Caine, Farber & Gordon, Inc. and Warren Point
International Limited. UNIX is a trademark of AT&T Bell Laboratories. VAX, VMS,
and Ultrix are trademarks of Digital Equipment Corporation. TNIX is a trademark of
Tektronix, Inc. MCS is a trademark of Intel Corporation. MS and XENIX are trademarks
of Microsoft Corporation.

Table of Contents

Chapter 1 Introduction

............................ 1
1.1 Supported Environments00 w0 e e e e 1
1.2 Installing 86/PC e e e e e e e e 1
1.3 Features and Capabilities 1
1.4 Organization of thisManual 2
Chapter 2 General Information 3
2.1 Invoking 86/PC Under UNIX and PC-DOS 3
2.1.1 Normal Invocation Options 3

2.1.2 Preprocessor Control Options 5

2.1.3 Compiler Debugging Invocation Options 5

214 ArgumentFiles L0000 6

2.1.5 Redirecting the Standard Error File B

2186 ReturnCodeso oo 6

2.2 Invoking 86/PCUnder VMS 6
2.2.1 Normal Invocation Options 7

2.2.2 Preprocessor Control Options 9

2.2.3 Completion Statuso, . 10

2.3 Overall Operation of 86/PC v v v v 0. 10
24 The 86/PC Compile-Time Control Language 10
2.4.1 Compile-Time Expressions 11

2.4.1.1 Compile-Time Variables 11

2.4.1.2 Compile-Time Constants «. .. 11

24.2 The“INCLUDE” Control 11

243 The“SET”Control« v 11

244 The“RESET” Control 12

2.4.5 Conditional Compilation 12

24.6 ListingControls 0. 12

24.7 OtherControls o e 13

2.4.8 OtherControls 00 13

2.5 86/PL Source Format 000 . 13
2,51 Blanksand Comments 13

2.5.2 Statement Recognition, 13

2.6 Object Module Format oo 14
2.7 Run-Time Supporto oo 14
Chapter 3 Introduction to the Meta-Language 15

Chapter 4 Modules and Procedures

ii

86/PC Compiler & Langucge Guide

4.1 Module Definitions oo 17
4.2 Main Programs o 0.0 0 e e e e e 17
4.2.1 Main Program Statement Labels 17
4.3 Procedure Declarationso 18
4.4 Procedure Parameters i e e e e e 18
4.5 Procedure Types v v 0 o e e 18
4.6 Procedure SCope v 0 i v e e e e e e e e e e e e 18
4.6.1 Public and Internal Procedures 19
4.6.2 External Procedures o e e e e 19
4.7 Procedure Class« v« o o e e e e e e e 19
4.7.1 Reentrant Procedures 19
4.7.2 Interrupt Procedures L0000 19
Chapter 5 DECLARE Statements 21
5.1 Factored Declarations« « i i e e e e e 21
5.2 The LABEL Attribute 21
5.3 The LITERALLY Attribute « v v v v v .. 22
5.4 The At Attribute oo 22
5.5 The DATA and INITIAL Attributes 22
551 SignedConstants0 23
5.5.2 Restricted Expressions 23
5.6 Element Attributes e e . 23
5.6.1 The EXTERNAL Attribute 23
5.6.2 The PUBLIC Attribute, 23
5.6.3 The BASED Attribute 24
5.6.4 The Dimension Attribute 24
5.6.5 The Basic Type Attributes 24
5.6.6 The STRUCTURE Attribute 25
Chapter 6 Executable Statements 27
6.1 DOGroups s e e e e e e e e e e 27
6.1.1 The DO Statement « . v v v o e e e e 27
6.1.2 The WHILE Statement 27
6.1.3 The Iterative DO Statement 28
6.1.4 The CASE Statement i v a v . 28
6.1.5 The UNDO Statement 28
6.2 The IF Statement« o v i i v e e e e 28
6.3 IF Blocks e e e 29
6.3.1 BlockIfStatemento 29
6.3.2 The ELSEIF Statement« v v v v v v .. 29
6.3.3 The ELSE Statement« .« . v o v v v .. 30
6.3.4 The ENDIF Statement 30
6.4 Simple Statements L L0 e e e e 30
6.4.1 The Assignment Statement 30
6.4.2 The CALL Statement 30
6.4.3 The GOTQO Statement v v« v v v v u 31
6.4.4 The Null Statement v v ... 31
6.4.5 The RETURN Statement« v v v v v « . 31
6.4.6 Special Statements L0000 0L 3
6.5 Endings e e e e e e 32
6.6 Label Definitions

............................

6.7
6.8

Chapter 7 Expressions

7.1
7.2
7.3
7.4
7.5
7.6

7.7

Chapter 8 Builtin Identifiers and Functions

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

B.12
8.13
8.14
8.15
B.18
8.17

Appendix A 86/PL and PL/M-86 Differences

A

Compatible Types
Conditional Expression

...........

Operators+ ...
Relational Operators
Constant Operands
Embedded Assignments
Addresses
References
7.6.1 Function Reference
7.6.2 Assignment Target Reference
7.6.3 Restricted Relerence
7.6.4 Inexact Reference
7.6.5 Explicitly Based Reference
7.6.6 Identifiers
Constants

............

.................

.....

......
.............

.................

Size of Variables
Type Conversion
Shiftand Rotate
Referencing Subfields
Constructing a Pointer
The Stack Pointer and Stack Base
Decimal Adjustment
Absolute Value
Square Root and PI
Time Delays
String Operations

8.11.1 String Move
811.2 String Set
8.11.3 String Translation
8.11.4 String Find and Skip
8.11.5 String Compare
FlagValues
Input and Output
Multiprocessor Synchronization
Addressing Interrupt Procedures
Setting the 8087 Mode
The Memory Array

.............

............

...........

Extensionsto PL/M-86
A.1.1 ReservedWords
A.1.2 Declare Statement

A.1.3 The Interrupt Attribute
A.1.4 Restricted Expressions . .
A.1.5 Explicitly Based Variables .
A.1.6 Builtin Functions as Assignment Targets
A17 ThelFBlock
A.1.8 The UNDO statement

Table of Contents

..............

..............
..............
..............
..............
..........
..............

..............

..............
..............

..............
...........
..............
..............
..............
.............
..............
..............
...........

..............
..........

..............
..........

iii

iv 86/PC Compiler & Language Guide

A.2 Unsupported PL/M-86 Features
Appendix B Error Messages

B.1 Warnings
B.2 Errors
B.3 Severe Errors
B.4 FatalErrors
B.s List of Error Messages

Appendix C Formal Definition of Meta-Language

.........
..............

.................

Appendix D Multiply and Divide for Double Words

D1 Routines for Intel 8086 Assembler
D.2 Routines for Tektronix 8086 Assembler

Appendix E Installingon VAX/VMS

Ea Supported Operating Environment . . .
E.2 Restoring the Tape
E3 Defining Logical Names
E.4 Installing the Native Commands
Appendix F Installing on UNIX Systems
F.1 Supported Operating Environment
F.2 Binary Installation
F.3 Selecting 86/PC Final Cutput Default
F.4 Tailoring With Environment Variables
F.4.1 Global Tailoring Changes
F.4.2 Local Tailoring Changes

........

........

F.4.3 Specifying Maximum Number of Arguments ..

Fs5 Tailoring With an Initialization File
F5.1 Examples

Appendix G Installingon PC-DOS

Gi1 Supported Operating Environment
G.2 Restoring the Diskette
G.3 Making the Temporary Directory
G.4 Installing 86/PC in the Search Path
G.5 Selecting 86/PC Final Output Default
G.6 Tailoring With Environment Variables
G.6.1 Global Tailoring Changes
G.6.2 Local Tailoring Changes
G.6.3 Specifying Maximum Number of Arguments
G.7 Tailoring With an Initialization File
G.7.1 Examples

........

.......

Appendix H Installing on Tektronix 856x

H.a Supported Operating Environment
H.2 Restoring the Diskette
H.3 Selecting 86/PC Final Qutput Default
H.4 Tailoring With Environment Variables
H.4.1 Global Tailoring Changes
H.4.2 Local Tailoring Changes
H.4.3 Specilying Maximum Number of Arguments
H.5 Tailoring With an Initialization File

............

............

............

.......

............

............

............

Table of Contents v

H51 Examples 77
Appendix I Source Installation on UNIX Systems 79
L1 Supported Operating Environment 79
L2 Restoring the DeliveryTape« o v v v v v .. 79

.21 TapeFormat 79

I.2.2 RestoringtheTape 79

1.2.3 Compiling the Sarin Utility 80

1.2.4 Extracting Source Files From the Archives 80

1.2.41 Structure of the Source Archives 81

: 1.2.4.2 Processing the Source Archives 81
1.3 Installing the 86/PC Compiler 82
[.3.1 Restoring the 86/PC Delivery Tape 82
1.3.2 Modifying the 86/PC Shell Scripts 82
13.2.1 Modifyingpedefs.sho o0 0oL 83

L3.2.2 Modifyving pccompilesh 0000 84

13.2.3 Modifying pclinksh L0000 L oo oL L 84

1.3.2.4 Modifying pcinstallsh 85

1.3.2.5 Modifying peprintsh 85

1.3.3 Using the 86/PC Shell Scripts 85
[.3.3.1 Compilingthe Source 85

1.3.3.2 Linkingthe Object. 85

1.3.3.3 Installing8/PC 85

1.3.3.4 Listing86/PC 85

1. Introduction

The 86/PC™ Experts—PL/M-86" is a compiler which accepts the 86/PL language as input
and generates code for the Intel 8086, 80186, and 80286 microprocessors. The 86/PL

language is a superset of the PL/M-86 language and most PL/M-80 and PL/M-86 source
modules should compile and execute with little or no modification.

1.1 SUPPORTED ENVIRONMENTS

The compiler operates on many different machines and operating systems including the

VAX"™ under VMS™ and Ultrix™, the Tektronix 8560 under TNIX™, and most other
UNIX™ systems.

1.2 INSTALLING 86/PC

Different methods are required for installing 86/PC under the various supported en-
vironments. See Appendix E through Appendix I for installation instructions,

1.3 FEATURES AND CAPABILITIES

This manual describes the 86/PL programming language and the operation of the 86/PC
compiler. It is intended as a reference guide and not as a tutorial. It is assumed that the
reader is already familiar with programming in the Intel PL/M-80 or PL/M-86 languages.

The 86/PL language contains a number of extensions to PL/M-86, including:

Relaxation of most restrictions on reserved words;

Relaxation of restrictions on the ordering and factoring of items in DECLARE
statements;

Introduction of structures within structures;
Introduction of explicitly based references;

Use of the HIGH, LOW, SELECTOR$OF and OFFSET$O0F builtins as assignment
tarpgets;

Introduction of the SQRT and PI builtins for reals;
Introduction of a fully-delimited IF block construct;
Introduction of an UNDO statement for premature loop exits; and

Introduction of a new scope for external data and procedures so that external
items declared in an included file may be redeclared within a module.

The 86/PC compiler supports the SET, RESET, and conditional compilation controls of

2 86/PC Compiler & Language Guide

the PL/M-86 compiler. The INCLUDE compiler control is also supported, except that the
path name of a file to be included must correspond to the syntax of a host path name.
The other PL/M-86 compiler controls are not supported.

See Appendix A for a complete description of the differences between 86/PL and PL-
M/8B.

1.4 ORGANIZATION OF THIS MANUAL
The remainder of this manual is divided into several parts:

e Chapter 2 provides general information on the compiler, including how to invoke
it in various operating environments;

® Chapter 3 provides an informal introduction to the metalanguage which is used
throughout the manual. A formal definition is provided in Appendix C.

Chapter 4 through Chapter 8 provide a detailed description of the 86/PL language.
Appendix A discusses the differences between 86/PL and PL/M-86.
Appendix B discusses the error messages that may be produced by the compiler.

Appendix D provides listings of routines needed for multiply and divide of
double words.

® Appendix E through Appendix I discuss installation of the compiler on the
various supported machines and operating systems.

2. General Information

This chapter provides general information to users of the 86/PL language and the 86/PC
compiler. It includes discussions of the compiler invocation procedure, the format of the
object module, and the compile-time control language.

2.1 INVOKING 86/PC UNDER UNIX AND PC-DOS

Under the UNIX and PC-DOS operating systems, the 86/PC compiler is invoked by:

86pc [option]... file...

The normal compiler operation is to compile each file and place the resulting object
module into a file with the same name as the source file with any “.*” suffix replaced

with “.q”. If a source file does not have a suffix, the object file name is formed by
postpending “.q”.

The object files are, in general, not immediately executable. They should be ul-
timately linked with any required libraries and then bound to addresses reasonable for
the final environment of the executable program.

The normal operation of the compiler may be modified by the use of various options
as described in the following sections.

2.1.1 Normal Invocation Options

The options used in normal invocations of 86/PC are:

-1 Cenerate a source listing and place it on the standard output file.

-a Generate a symbolic, assembler-like, listing and place it on the standard
output file.

-X Generate a source listing and a cross reference listing and place both on the
standard output file.

-5 Perform syntax checking but do not generate code or produce a “.q” file. This
option causes only the preprocessor, phase 1, and phase 2 {Section 2.3) to be
rumn.

-Mstring Change the compiler’s model of the machine. The letters in string indicate:

4 86/PC Compiler & Language Guide

-Ostring

-t

-pnnn

-Xsaaa

-Xpaaa

separate code segments
separate data segments
separate data and stack
separate data and memory
constants with the code (rom)
four byte pointers

alternate linkage

target machine is an 80186
target machine is an 80286

N R T wAn

Therefore no “-M"” option is the SMALL control, “-Mcp” is the MEDIUM
control, “-Msmp"” is the COMPACT control, and “-Mcdsmrp” is the LARGE
control. The addition of “r” is equivalent to using the ROM control.

Change the level of optimization. The letters in string indicate:

turn off common subexpression optimization
assume AT variables do not change with each fetch
assume BASED stores do not alter any base pointer
use short method to compare pointers

ignore all implicit interactions

= =l =

The option “-Opi” together with the “-J” option corresponds to the
OPTIMIZATION=3 control.

Cause the optional jump optimization phase to be invoked. This will result

in smaller, faster programs in many cases but will increase the compilation
time.

Generate a symbolic, assembler-like, listing. The listing is placed in the
corresponding “.8” file.

Generate local symbol and line number records in the object file for possible
use by a run-time debugging system.

Generate local symbol and line number records in the object file for possible

use by arun-time debugging system. Use the line numbers given in the source
listing.

Generate an Intel standard object module and place it in the corresponding ‘.q’
file. This may be established as the default when the compiler is installed.

Generate a Tektronix LAS object module and place it in the corresponding ‘.q’
file. This may be established as the default when the compiler is installed.

nnn is an integer giving the number of lines per printed page. If this option
is not specified, a value of 66 will be used.

Specifies, as aaa, the default suffix to use for source [ile names that are not
given with a suffix,

Specifies, as aaaq, the suifix to be used on object {iles in place of the default
H‘qii‘

Chapter 2: General Information 5

-Xlaaa Specifies that any lsting produced will be directed to a file, instead of to
the standard output. The file will have the same name as the corresponding
source file, but with a suffix of aaa.

-Xicaa Specifies, as aaa, the suffix to be used on generated preprocessor output files,
instead of the default “.i”.

-XSaaa Specifies, as aaq, the suffix to be used on symbolic output files produced as
a result of the -5 option, instead of the default *.8".

-Xtaaa Specifies, as aaq, the prefix to be used on all temporary file names, instead of
the default “\tmp\” under PC-DOS or “/usr/tmp/” under UNIX. As an example,
“.Xt./” will cause temporary files to be created in the current directory (i.e.,
the one in use when 86PC is invoked).

2.1.2 Preprocessor Control Options

The normal action of the compiler preprocessor phase (Section 2.3 and Section 2.4) can
be modified by:

-Dname Define name as a compile-time variable and assign it the value “-1”. The

first attempt to redefine the variable with a SET control {Section 2.4.3) will
be ignored.

-Dname=expression

Define name as a compile-time variable and assign it the value of expression.
Expression can be any valid compile-time expression (Section 2.4.1). The
operands of the expression must be constants or the names of compile-time
variables defined in preceding “-I"’ options. The first attempt to redefine the
variable with a SET control (Section 2.4.3} will be ignored.

-Ilist Specify directories to be searched for an INCLUDE file (Section 2.4.2) if the
file is not found in the directory of the source file. The list is a colon-separated
list of directory paths.

-E Don’t compile the source files. Instead, just run them through the
preprocessor and place the output on the standard output file.

-P Don’t compile the source files. Instead, just run them through the
preprocessor and, for each, put the output into a corresponding “.i"” file.

2.1.3 Compiler Debugging Invocation Options
These options may be useful when debugging the 80/PC compiler. Normally they should
not be used.

-Bstring Prepend siring to the name of each compiler phase before executing it, thus
allowing alternate versions of the compiler to be executed.

-T Display interesting things about the compiler progress on the standard error
file. '

-TT Same as the “-T" option but don’t actually call the compiler phases.

6 86/PC Compiler & Language Guide

-V Display the compiler version number on the standard error file and im-
mediately exit.

K Do not delete the compiler intermediate files which remain at the end of the
compilation.

2.1.4 Argument Files

Any command line argument may have the form
@argfile

where argfile is a [ile containing more arguments. This is particularly useful in cases
where more arguments are required than will it on the original command line.

2.1.5 Redirecting the Standard Error File

Error messages are written on the standard error file, which is usually the display screen.
This may be changed by using a command line {(or argument file) argument of the form

rerrfile

where errfile is the name of the file to receive error messages. If the argument has the
form

Amerrfile
the messages will be appended to the file.
2.1.6 Return Codes

The compiler returns the following codes to its invoker. See Appendix B for more detailed
descriptions of these codes.

0 Compilation completed with no errors.

1 Compilation completed with warnings.

2 Compilation completed with errors.

3 Compilation terminated with a severe error.

4 Compilation terminated with a fatal compiler error.

2.2 INVOKING 86/PC UNDER VMS

Under the VMS operating system, the 86/PC compiler is invoked by:

Chapter 2: General Information 7

86PC [options] file-name

Command Qualifiers:

/ [NO] CROSS_REFERENCE

/ [NO]DEBUG= (options)
/DEFINE= (name-1ist)
/INCLUDES= (directories)
/ [NOILIST[=file-spec]

/ [NOIMACHINE_CODE
/MODEL= {¢options)

/ [NO]OBJECT [=file-spec]
/ [NOJOPTIMIZE= (options)
/ [NO] PREPROCESS_ONLY

Defaults:

/NOCROSS._REFERENCE
/NODEBUG

/NOLIST
/NOMACHINE_CCDE

/OBJECT
/OPTIMIZE=SUBEXPRESSIONS
/NOPREPROCESS_ONLY

FSYNTAX

The normal compiler operation is to compile the named file and place the resulting object
module into a file with the same name as the source file but with a file type of “Q86".
The default file type for the source file is “P86",

The cbject files are, in general, not immediately executable. They should be ul-
timately linked with any required libraries and then bound to addresses reasonable for
the final environment of the executable program.

The normal operation of the compiler may be modified by the use of various options
as described in the following sections.

2.2.1 Normal Invocation Options

/CROSS_REFERENCE
/NOCROSS _REFERENCE

Controls whether or not a cross-reference listing will be generated. If so, it
will appear at the end of the listing file. For /CROSS_REFERENCE to operate,
/LIST must also be in effect. The default is /NOCROSS_REFERENCE.

/{DEBUG[=option]
/INODEBUG

Specifies the type of debugging output to be placed in the generated object
module. The options are:
LINE_NUMBERS generate debug records which refer to input
line numbers. Such numbers will not be as-
signed to lines which are contained in files
which are input by the INCLUDE compiler
control.

STATEMENT_NUMBERS generate debug records which refer to state-

ment numbers as printed on the listing.

The two options are mutually exclusive. The default
is /NODEBUG. /DEBUG without an option is
/DEBUG=STATEMENT_NUMBERS.

qualifier
equivalent to

8 86/PC Compiler & Language Guide

/LIST{=file-spec]
MNOLIST

By default, the compiler does not produce a listing. If /LIST is specified,
the compiler produces a source listing file with the same name as the input
source file but with a file type of “LIS”. This may be overridden by giving a
file-spec.

MACHINE_CODE

/NOMACHINE_CODE

MACHINE_CODE will cause the compiler to produce a symbaolic, assembler-
like listing on the listing {ile where it will follow the source listing. This
listing is provided for information only and is not intended to be a complete
assembly-language program. The default is NOMACHINE_CODE.

/MODEL=(option,...)

This qualifier changes the compiler's model of the target machine. The
possible options, which may appear in any order, are

CODE generate separate code segments

DATA generate separate data segments

STACK generate separate data and stack segments
MEMORY generate separate data and memory segments
ROM put the constants with the code

P4 generate four-byte pointers

186 target machine is an 80186

286 target machine is an 80286

If the MODEL qualifier is not used, the compiler will generate the so-called
small model. The other commonly used models may be specified as

MODEL={code p4) Medium model
/MODEL-={stack,memory,p4) Compact model
/MODEL-=(code,data,stack,memory,rom,p4) Large model

fOBJECT[=file-spec]
/NOOBJECT

Controls whether or not the compiler produces an object module. The default
is /OBJECT which produces an object model that has the same file name as
the source file and a file type of “Q86".

/OPTIMIZE[=(options))
/NOQOPTIMIZE

Conirols whether or not the compiler optimizes the compiled program to
generate more efficient code. The options, which may appear in any order,

are

[NO]SUBEXPRESSIONS specifies elimination of common subexpres-
sions

[NOJAT-VARIABLES specilies that uses of AT variables are to be

optimized

Chapter 2: General Information 9

[NOJBASED_VARIABLES specifies that uses of BASED variables are
to be optimized by assuming that no based
store will modify any base pointer. Note that
the compiler will always assume that a based
store will not change its own base pointer.

[NOJJUMPS specifies that the compiler is to attempt
to remove dead-end and duplicate code
sequences and to change long jumps to short
jumps where possible

[NOJPOINTERS specifies that pointer comparisons are to
be optimized by assuming that independent
comparison of frames and offsets is sufficient
to compare two pointers.

[NOIDANGEROUS AXDANGEROUS option .ixXNODANGER-
OUS option specifies that various other
optimizations are to be performed. These in-
volve assumptions that may not always be
valid and, thus, may lead to incorrect code.

The default is /OPTIMIZE=SUBEXPRESSIONS.
ISYNTAX

Specifies that the compiler is to perform syntax checking, only. Code
generation will not be performed an an object module will not be produced.

2.2,2 Preprocessor Control Options

The normal action of the compiler preprocessor phase (Section 2.3 and Section 2.4) can
be modified by:

/DEFINE=(name[=expression],...)

Defines each name as a compile-time variable and assigns it the value of the
expression {or the value “-1" if an expression is not given). The first attempt
to redefine the variable with a SET control (Section 2.4.3) will be ignored.
The expression can be any valid compile-time expression (Section 2.4.1). The
operands of the expression must be constants or the names of compile-time
variables defined previgusly in the /DEFINE qualifier.

/INCLUDES= (directory,...)

Specify directories to be searched for an INCLUDE file (Section 2.4.2}) if the
file is not found in the directory of the source file. The directories are
searched in the order given.

/PREPROCESS_ONLY
/NOPREPROCESS_ONLY

Specifies that the source file is not to be compiled but is to be run through

the preprocessor with the output placed on the listing file. The default is
/NOPREPROCESS_ONLY.

10 86/PC Compiler & Language Guide

2.2.3 Completion Status

On completion, the compiler returns a standard VMS completion status of success,
warning, or severe/fatal. See Appendix B for more detailed descriptions of these codes.

2.3 OVERALL OPERATION OF 86/PC

The 86/PC compiler consists of a driver, named “86pc”, and a number of phases which

perform the actual compilations. The phases used in a normal compilation, in the order
executed, are;

86pp The preprocessor which handles the compile-time control language described
in Section 2.4.

86p1 The initial syntax analyzer and declarations processor.

86p2 The final syntax analyzer, semantics processor, and run-time storage
allocator.

86pcg The code generator.

86pjo The optional jump optimizer.

86pifo The final output generator for Intel object.

g6ptio The final output generator for Tektronix object.
86pfo The final output generator.
86psym The symbolic lister.

86pxri The cross-reference lister,

2.4 THE 86/PC COMPILE-TIME CONTROL LANGUAGE

If the first character of a line is a “$”, the line is known as a control line. This is true
even if the line is within a comment or a quoted string. Such lines are used to request
inclusion of additional source files and to control conditional compilation.

The general format of a control line is:

$ [control]...

where control has the general format:

keyword [operand)]

The keywords are as described below and the operand format depends on the particular

keyword. Letters appearing in keywords may be entered in either upper-case or lower-
case.

Chapter 2: General Infermation 11

2.4.1 Compile-Time Expressions

Several controls allow compile-time expressions in their operands. These are expressions
which combine compile-time variables and numeric constants with the operators:

+ - * / NOT AND OR XOR < <K= = <> >= 2>

The meaning of the operators and their precedence is the same as for other 86/PL expres-
sions (Chapter 7) and parentheses may be used to modify the precedence.

2.4.1.1 Compile-Time Variables

Compile-time variables have the same form as other 86/PL identifiers (Rule 92). They
contain signed, 16-bit quantities and are accessible only with compiler controls.

2.4.1.2 Compile-Time Constants

Compile-time constants have the form of a “number” (Rule 87) as described in Section 7.7.
They can be represented in binary, octal, decimal, or hexadecimal notation.

2.4.2 The “INCLUDE” Control

The INCLUDE control has the form

$INCLUDE (path)

where path is a path to a file name. If necessary, the file is searched for first in
the directory of the primary source file, and then in the directories given in the *-1”
(“/INCLUDES") invocation option (Section 2.1.2, Section 2.2.2). If the file is found, it is
included in the source at this point,

The INCLUDE control must be the rightmost control on a control line. Included files
may, themselves, contain INCLUDE controls.
2.4.3 The “SET” Control
The SET control has the form

$SET (setspec],setspec]...)

where each setspec has the form

compile-time-variable[=compile-time-expression]

The variable is defined (or redelined) to have the value of the expression. Any variables
used in the expression must have been previously defined by a SET control or by the
“.D” (*/DEFINE") invocation option {Section 2.1.2, Section 2.2.2). I the expression {and
the equal sign) are absent, a value of -1 will be assigned to the variable. The first $SET

12 86/PC Compiler & Language Guide

of a variable that has been set by a “-D” (*/DEFINE”) invocation option is ignored.

2.4.4 The “RESET" Control

$RESET (var[,var]...)

Each variable is defined (or redefined) to have the value of zero. The first $RESET of a
variable that has been set by a “-I}” (“/DEFINE") invocation option is ignored.
2.4.5 Conditional Compilation

Conditional compilation is performed by the controls described in this section. When
used, each of these controls must appear alone on a control line.

The general form of a conditional compilation block is

$IF expression

$ELSEIF expression

$ELSEIF expression

$ELSE

$ENDIF

The ELSEIF and ELSE portions are optional and there can be a number of ELSEIF portions.
Conditional compilation blocks may be nested.

An expression in the IF and ELSEIF controls is considered true if the low bit of its
value is one; otherwise, it is considered false.

2.4.6 Listing Conirols

The listing controls are TITLE, SUBTITLE, LIST, NOLIST and EJECT. The listing
controls are ignored unless the “-1” (*/LIST”), “-a” (“/MACHINE_CODE"), or “-x"
(*/CROSS_REFERENCE") options create a listing on the standard output.

The TITLE and SUBTITLE control have the form

Chapter 2: General Information 13

$TITLE ('string")
$SUBTITLE ('string')

where string is a sequence of up to 60 ASCII characters.

More than one SUBTITLE is allowed. Any SUBTITLE control after the f{irst causes a
page eject.

The LIST, NOLIST and EJECT controls have the form

$LIST
$NOLIST
$EJECT

LIST resumes listing the source. NOLIST suppresses listing of the source. EJECT causes
a page eject in the source listing.

2.4.7 Other Controls

All cther controls are ignored by 80/PC so that source files intended for PL/M-8Q can be
processed by 80/PC without change.

2.4.8 Other Controls

All other controls are ignored by 86/PC so that source files intended for PL/M-86 can be
processed by 86/PC without change.

2.5 86/PL SOURCE FORMAT

An 86/PL source program is composed of a sequence of lines, each of which must be
ended by a newline character.

2.5.1 Blanks and Comments

A comment in 86/PL consists of a sequence of characters prefixed with the combination
“/*” and suffixed with the combination “#/". The sequence of characters may not include
the combination “*/”.

A comment may be used wherever a blank is permitted, except within strings.

2.5.2 Statement Recognition

There are no reserved words in 86/PL. However, a statement beginning with one of the

following statement keywords is assumed to be the statement which begins with that
word:

Do IF PROCEDURE ENABLE

END ELSEIF DECLARE DISABLE

GO ELSE CALL HALT

GOTO ENDIF RETURN CAUSEINTERRUPT

UNDO

14 86/PC Compiler & Language Guide

2.6 OBJECT MODULE FORMAT

The object module produced by the 86/PC compiler uses the format of the Intel MCS-
8086 Relocatable Object Module Formats. Some versions of the compiler are optionally
able to produce Tektronix LAS format object modules.

2.7 RUN-TIME SUPPORT

The only external calls generated by 86/PC are for multiply, divide, and MOD for
the DWORD data type. The compiler uses LQ.DWORD_MUL for multiply and
LQ_DWORD_DIV for both divide and MOD. The user must supply LQ_.DWORD_MUL

and LQ_DWORD._DIV when the compiler generates calls to them. See Appendix D for
example listings.

3. Introduction to the Meta-Language

This manual presents the complete syntax for the 86/PL language using a formal meta-
language. The syntax is permissive in that some constructs that are formally allowed by
the syntax are disallowed in practice as described in the text of this manual.

The meta-language used to describe the syntax of 86/PL is a modification of BNF. It
is described informally in this chapter and formally in Appendix C.

A grammar in the meta-language consists of a sequence of rules, each terminated by
a period.

Non-terminal symbals are composed of letters, decimal digits, and dashes. Literals
are represented as quoted strings or as a sequence of upper-case letters. Within a literal,
an upper-case letter and the corresponding lower-case letter are considered equivalent.

Each rule of grammar has the general form:
v=s511s2]...1]sn

where v is a non-terminal symbol and the s’s are arbitrary strings of non-terminal symbols

and literals. The interpretation of such a rule is that v is to be replaced by one of the
alternatives s1, or s2, or ...or sn.

This form can be extended by a number of simplifying constructs;
1. A rule such as
a=b% 1lc'.
may be written as
a={blc}?.
In general,

v=slills2|slt2ds2]...|s1tins2.

(where the t's are non-null strings of non-terminal symbols and literals) may be
replaced by

v=st{t1(t2]...itn} s2.

2. A rule such as
a=blbec.

may be written as

16 86/PC Compiler & Language Guide

a=blc].

in general,
v=s51521s1t1s2]...]s1ins2,

may be replaced by
vest[tl[t2]...|tn]s2

3. A rule such as

a=bhlab.

may be written as
a=b*

which may be read as “a is to be replaced by one or more occurrences of b”. For
convenience, the sequence

[t*]
may be replaced by
(tr*
and the sequence
[{t11t21...0¢tn}*]
may be replaced by
[t1 1421 ...1tn]*

4. Modules and Procedures

The 86/PL unit of compilation is known as a module. It may contain declarations,

procedures, and possibly a main program. Modules, procedures, and main programs
are discussed in this chapter.

4.1 MODULE DEFINITIONS
The syntax of a module is:

1. module = identifier ' DO ‘;’ module-body ending.

2, module-body = ([declare-statement | procedure-declaration]*
[executable-statement]*.

The statements from the DO statement through the ending are within a new naming
scope. This naming scope is the module level and many concepts such as initial data,
public and external data, and reentrant and interrupt procedures can only be used in
statements at the module level.

The identifier is the module name and is used to name the resulting object module.

If a name appears in the ending {(Rule 67) of the module, the compiler will verify that it
is the module name.

A source file may contain only one module.

4.2 MAIN PROGRAMS

If the module body contains executable statements {(Rule 38) not contained within
procedures (Rule 3), the module is a main program. The entry point of a main program
is the first executable statement in the module body. All executable statements except
the RETURN statement (Rule 61) may appear in a main program. A HALT statement
{Rule 65) implicitly follows the last statement of a main program.

4.2.1 Main Program Statement Labels
Statement labels (Rule 68) in a main program differ in three ways from statement labels
in procedures:

they may be declared PUBLIC;

they generate code to reinitialize the stack pointer and the stack base registers;
and

e they may be the target of a GOTO statement (Rule 59) from outside the main
program.

18 86/PC Compiler & Language Guide

4.3 PROCEDURE DECLARATIONS

The syntax of a procedure declaration is:

3. procedure-declaration = identifier '’ procedure-head
procedure-body ending.

4. procedure-body = [declare-statement | procedure-declaration]*
[executable-statement]*,

5. procedure-head = PROCEDURE [parameter-list]
[procedure-attribute]* ;.

6. procedure-attribute = basic-type | procedure-scope |
procedure-class.

The statements from the procedure head through the ending are within a new naming
scope.

If a name appears in the ending (Rule 67) of the procedure, the compiler will verify
that the named procedure is the one being ended.
4.4 PROCEDURE PARAMETERS
The syntax of the optional procedure parameter list is:

7. parameter-list = ‘f’ identifier [," identifier]* ‘).

Procedure parameters appear in the parameter list and then in declare statements
{Rule 10) which must appear among the declare statements in the procedure body. The

declare statements for procedure parameters give a basic type (Rule 33) and no other
attributes.

4.5 PROCEDURE TYPES

Procedures are either untyped or have one of the basic types (Rule 33).

Untyped pracedures are frequently referred to as subroutines. They are invoked by a
CALL statement (Rule 58). The return from an untyped procedure is a RETURN statement
without the optional expression. Such a return implicitly follows the last statement of
an untyped procedure.

Typed procedures are frequently referred to as functions. They are invoked by a
function reference (Rule 86) within an expression. The return from a typed procedure is
a RETURN statement with an expression compatible with the type of the procedure, If
the return does not have the optional expression, a warning is issued.

Unless the end of the function is preceded by a GOTQ statement or a RETURN
statement, a return without an expression is generated.

4.6 PROCEDURE SCOPE
The syntax of the procedure scope attributes is:
8. procedure-scope = EXTERNAL | PUBLIC.

Procedures which are neither external nor public are internal. A single procedure
definition can not have both the EXTERNAL and PUBLIC attributes.

Chapter 4: Modules and Procedures 19

4.6.1 Public and Internal Procedures

Procedures with the PUBLIC attribute or with no scope attribute are actual procedures
and should have at least one executable statement (Rule 38) in their procedure bodies.

4.6.2 External Procedures

Procedures with the EXTERNAL attribute are dummy procedures that declare the

procedure type and parameters. The procedure bodies of external procedures may con-
tain only declarations for the procedure parameters.

External procedures may appear only at the module level. Like all external
declarations, external procedures may be redeclared as actual procedures at the module
level. No compatibility checks are made when a procedure is redeclared in this way.

4.7 PROCEDURE CLASS
The syntax of the procedure class attributes is:

9. procedure-class = REENTRANT | INTERRUPT [number].

A procedure may have both the interrupt and the reentrant attributes.

4.7.1 Reentrant Procedures

Procedures with the REENTRANT attribute have their local storage allocated on the stack.
This allows more than one activation of the reentrant procedure to execute concurrently.
Reentrant procedures must be at the module level and may not have other procedures
nested within them.

4.7.2 Interrupt Procedures

Procedures with the INTERRUPT attribute can be invoked from the processor interrupt
vector of the machine. The prologue of an interrupt procedure disables interrupts and
stores all the processor registers. The epilogue restores all the registers, enables inter-
rupts, and returns. Interrupt procedures are untyped and have no parameters,

If the optional number is used, an interrupt vector is generated by the compiler.

5. DECLARE Statements

The syntax of the DECLARE statement is:

10. declare-statement = DECLARE declaration-list* *;'.
11. declaration-list = declaration-item [, declaration-item]*.

12. declaration-item = identifier any-atiribute* |
factored-declaration-item.

13. any-attribute = label-attribute | literally-attribute |
at-attribute | initialization-attribute | element-attribute,

Data items, labels, and literallys are declared by means of the DECLARE statement. All
identifiers except procedure names, labels, and the predefined array, MEMORY, must be
declared in a DECLARE statement before they are used.

5.1 FACTORED DECLARATIONS
The syntax of a factored declaration item is:

14. factored-declaration-item = ‘{’ basic-declaration [,
basic-declaration]* ‘)’ any-attribute*].

15. basic-declaration = identifier [element-attribute]}*.

Factoring of declarations has two purposes — convenience, and forcing contiguous
allocation of storage. When items in the factored list are allocated storage, that storage
will be contiguous and i{n the order of the items in the list.

5.2 THE LABEL ATTRIBUTE
The LABEL attribute is:

16. label-attribute = LABEL.

The LABEL attribute declares an identifier to be a label. When an identifier is used
in a label definition (Rule 68) it is implicitly declared, so explicit label declaration is
not normally needed. However, the label declaration is needed to associate the PUBLIC
and EXTERNAL attributes with a label. The LABEL attribute must be factored if any
attributes are factored. The LABEL attribute is incompatible with any attributes except
PUBLIC and EXTERNAL.

22 86/PC Compiler & Language Guide

5.3 THE LITERALLY ATTRIBUTE
The syntax of the LITERALLY attribute is:

17. literal-atiribute = LITERALLY string.

An identifier declared with the LITERALLY attribute is actually a parameterless mac-
ro. Whenever the compiler encounters an identifier declared with this attribute, the
associated string (Rule 95) is substituted for the identifier. Since the compiler resumes its
scan from the beginning of the substituted string, that string may also contain identifiers
declared with the LITERALLY attribute.

The LITERALLY attribute is not compatible with any other attribute.

5.4 THE AT ATTRIBUTE
The syntax of the AT attribute is:

18. at-atiribute = AT ‘(' restricted-expression).

The AT attribute can only be applied to variables which are not based or external. The
restricted expression (Rule 25) cannot be the address of a procedure or label. If the
restricted expression gives the address of an external variable, then the variable with
the AT attribute cannot be public. If the AT attribute is applied to a factored list, the
first variable is placed at the location given by the restricted expression and the other
variables follow. A variable with the AT attribute is assumed to have a new value every
time it is referenced so it will not normally be optimized. However, the a setting of
the -O invocation switch (Section 2.1.1), or the AT option of the /OPTIMIZE qualifier
(Section 2.2.1), allow optimization of AT variables.

5.5 THE DATA AND INITIAL ATTRIBUTES
The syntax of the DATA and INITTAL attributes is:

19. initialization-attribute = data-attribute | initial-attribute.

20. datg-attribute = DATA [(’ initialization-item-list ‘}'].

21. initial-attribute = INITIAL ‘(’ initialization-item-list ')

22. initialization-item-list = init(i?ﬂization-item [, initialization-item]*.

23. initialization-item = string | signed-constant | restricted-expression |
function-reference.

The DATA attribute without an initialization item list can only be applied to external
variables. It is needed when the external item is allocated in the code segment.
Initialization attributes can only be applied to variables which are not based (Rule 31) or
external. If the initialization attribute is applied to a factored list, the initialization items
are used to fill the variables in the list until they are used up.

If the initialization item is a string (Rule 95), each element is filled with the next
bytes in the string. For instance, if the current element is a word, the next two bytes will
be used to fill the element, When the string contains too few bytes to fill the element,
those that remain will be placed left adjusted in the element.

The DATA attribute specifies that the variable cannot be changed during execution.
When separate data or ROM is specified with the -M option, or with the /MODEL qualifier,

Chapter 5: DECLARE Statements 23

variables with the DATA attribute are allocated in the code segment. The INITIAL
attribute specifies that the variable is assigned to the data segment and can be changed
at execution. The INITIAL attribute can only appear at the module level (Section 4.1).

The only functions that may be used in an initialization are the builtin functions

that give constant values (Section 7.3) and the builtin functions INTERRUPT$PTR,
SELECTOR$OF, and OFFSET$OF.

5.5.1 Signed Constants
A signed constant has the syntax:
24. signed-constant = ['#' | ‘-']* number.
Signed constants are used to initialize dword and real variables.
5.5,.2 Restricted Expressions
A restricted expression has the syntax:

25. restricted-expression = address [[‘+’ | ‘-'} expression] |
expression.

Restricted expressions are used in the AT attribute, DATA attribute, and the INITIAL
attribute. The expression must have the form of a constant operand (Section 7.3). The
address {(Rule 81) may be the address of a long constant (Rule 82).

5.6 ELEMENT ATTRIBUTES

The syntax of an element atiribute is:

26. element-attribute = storage-class | member-attribute,
27. storage-class = public-attribute | external-attribute | based-attribute.
28. member-atiribute = dimension | structure | basic-type.

5.6.1 The EXTERNAL Attribute
The EXTERNAL attribute is:

28. external-attribute = EXTERNAL.
The EXTERNAL attribute can only be used at the module level.

The scope of externals is between that of builtin names and module level names.
This means that external names can be redefined by declarations at the module level.
A program made up of many modules can therefore have a definition file containing
external definitions for all identifiers shared between the modules. This file can be
included in all the modules, even one where there is a corresponding public definition,
without causing an error.

5.6.2 The PUBLIC Attribute
The PUBLIC attribute is:

30. public-attribute = PUBLIC.

24 86/PC Compiler & Language Guide

The PUBLIC attribute makes an identifier available to other modules. The PUBLIC

attribute can be used only at the module level. An identifier that is declared EXTERNAL
or AT an external cannot have the PUBLIC attribute.

5.6.3 The BASED Attribute
The syntax of the based attribute is:
31. baosed-attribute = BASED { restricted-reference | "*'}.
The BASED attribute specifies that the declared item is located at the address given by
its base. No starage is allocated for based items.

The restricted reference (Rule 89) gives an implied base which must be a previously
defined word, dword, pointer, or selector. The implied base will be used when an actual
reference to the based item does not have an explicit base (Rule 91).

An implied basge of “*’ meang that the variable must always be referenced with an
explicit base.

5.6.4 The Dimension Attribute
The syntax of the dimension attribute is:

32. dimension = ‘(' {number| '*’} ‘).

The dimension attribute specifies that the declared item is an array and usually gives the
number of elements in the array.

A dimension of ‘*’ is legal if the identifier is external or based or if it has an unfactored
INITIAL attribute or DATA attribute. The actual dimension of an external or based array
is unimportant. If an array is initialized, the value of the **' is set to the the number of
items in the initialization list. If an item in the initial list is a string, the dimension will
be made large enough to hold the bytes in the string. For instance, if the string is five
bytes and the array is a word array, three words will be allocated in the array to hold the
string,

Note that the dimension attribute need not immediately follow the dimensioned
identifier.
5.6.5 The Basic Type Attributes
The basic types are:
33. basic-type = BYTE | WORD | ADDRESS | DWORD | INTEGER |
REAL | POINTER | SELECTOR.
. The BYTE type specifies an unsigned number of 8 bits. This is a number from 0 to 255.

The WORD type specifies an unsigned number of 16 bits. This is a number from 0
to 65535

The ADDRESS type is exactly the same as the WORD type.

The DWORD data type specifies an unsigned number of 32 bits. This is a number
from 0 to 4294967295.

The INTEGER type specifies a signed number of 16 bits. This is a number from -
32768 to 32767.

The REAL data type specifies a real number of 32 bits. Real numbers are in the 8087
short-real format.

Chapter 5: DECLARE Statements 25

The POINTER type specifies an address made up of a 16-bit offset and a 16-bit base.
A pointer is, therefore, normally 32 bits long. When all data is addressable from the data
segment register, a pointer can be just the 16-bit offset. This is controlled by the -M
invocation option or the /MODEL qualifier.

The SELECTOR data type ELECTOR data type specifies an 8086 paragraph number
and is 16 bits long.

5.6.6 The STRUCTURE Attribute
The syntax of the STRUCTURE attribute is:
34. structure = STRUCTURE ‘(' member-list ‘).
35. member-list = member [*,’ member]*,
~-36. member = member-identifier member-attribute* |
‘(" member-identifier [',"” member-identifier]* ‘)
member-atiribute®.
37. member-identifier = identifier | *’.

If the member identifier is a ‘*’, an unnamed space is left in the structure. The size of
this space is determined by the member attributes {Rule 28).

6. Executable Statements

The syntax of an executable statement is:

38. executable-statement = do-group | if-statement | if-block |
simple-statement.

6.1 DO GROUPS
The syntax of a DO group is:

39. do-group = group-head-statement [declaration]*
[undo-statement | executable statement]* ending.

40. group-head-statement = [label-definition] { do-statement |
while-statement | iterative-do-statement |
case-statement } .

The statements from the group head through the ending are within a new naming scope.

Any group may be prefixed with a label which gives the group name to be referred to
in an UNDO statement or an END statement. If the label definition {Rule 68} preceding
a group contains multiple labels, the last one is the group name.

If the group name is used in an END statement, the compiler will verify that the
named group is, in fact, the one being closed.

6.1.1 The DO Statement
The syntax of the DO statement is:
41. do-statement = DO ;.
The DO statement initiates a group but serves no other purpose.
6.1.2 The WHILE Statement
The syntax of the WHILE statement is:
42. while-statement = DO WHILE conditional-expression *;'.

The WHILE statement initiates a group. The statements within the group are executed
repeatedly while the conditional expression (Rule 69) remains true. The test takes place
before each execution of the statements within the group.

28 86/PC Compiler & Language Guide

6.1.3 The Iterative DO Statement
The syntax of the iterative DO statement is:

43. iterative-do-statement = DO restricted-reference *=’ expression-1
TO expression-2 [BY expression-3] *;’.

This statement initiates a group that is an iterative loop. The restricted reference (Rule 89)
is the loop index. The expressions (Rule 70) must have a type compatible with the type

of the loop index. If the optional BY clause is absent, expression-3 is assumed to be the
constant 1.

The loop index may be either integer or unsigned [byte or word). Integer and unsigned
iterative loops operate in a significantly different manner. For both types of iterative
loops, the start, expression-1, is first evaluated and assigned to the loop index.

For an unsigned iterative loop, the limit, expression-2, is evaluated before each
iteration of the loop. If the loop index exceeds the limit, the loop is terminated. The step
expression is evaluated after each iteration of the loop and is added to the loop index. If
there is an overflow, the loop is terminated.

For an integer iterative loop, both the limit and the step expressions are evaluated
before each iteration of the loop. If the step is positive the loop is terminated if the loop
index is greater than the Himit, If the step is negative the loop is terminated if the loop
index is less than the limit. After each iteration of the loop the step which was evaluated
at the beginning of the loop is added to the loop index.

6.1.4 The CASE Statement
The syntax of the CASE statement is;

44. case-statement = DO CASE expression ‘.

In operation, consider that each statement in the body of the group is numbered sequen-
tially from zero. The expression is evaluated and the correspondingly numbered state-

ment is executed. Control is then transferred to the statement following the end of the
group.

I the value of the expression is negative or greater than the number of statements in
the body of the group minus one, the results are unpredictable.

6.1.5 The UNDO Statement
The syntax of the UNDO statement is:
45. undo-statement = [label-definition] UNDO [identifier] *;".

If the identifier is absent, control passes cut of the immediately containing DO group.

If the identifier is present, control passes out of the containing DO group with the
corresponding name.

6.2 THE IF STATEMENT
The syntax of the IF statement is:

46. if-statement = if-clause executable-statement | if-clause
balanced-statement ELSE execuiable-statement.

47. if-clause = [lebel-definition] IF conditional-expression THEN.

Chapter 6: Executable Statements 29

48. balonced-statement = if-clause balanced-statement ELSE
balanced-statement | { if-block | do-group | simple-statement) .

Note that the IF statement itself is not ended by a semicolon. If the conditional expression
(Rule 69) is true, the executable statement following the THEN is executed and, if there is
an ELSE, the executable statement following the ELSE is not executed. If the conditional
expression is false, the executable statement following the THEN is skipped and, if there
is an ELSE, the executable statement following the ELSE is executed.

6.3 IF BLOCKS

The syntax of an IF block is:

49. if-block = block-if-statement [executable-statement]* [block-elseif]*
[block-else] endif-statement.

- 50. block-elseif = elseif-statement [executable-statement]*.

51. block-else = else-statement [executable-statement]*.

The IF block provides the same capability as the IF statement but does so with separate
statements as the block delimiters. This use of statements as the block delimiters is like
the use of the DO and END statements as group delimiters. However, an IF block does

not create a new naming scope.
6.3.1 Block If Statement
The syntax of the block IF statement is:

52. block-if-statement = [label-definition] IF conditional-expression ;.

The block IF statement introduces an IF block. Note that this statement has a semicolon
in the place that an IF statement would have a THEN.

If the conditional expression {Rule 69) is false, control passes to the following block
delimiter for this IF block. The following block delimiter may be an ELSEIF statement,
an ELSE statement, or an ENDIF statement.

If the conditional expression is true, control falls through to the following statements
which are executed up to the following block delimiter. Control then passes to the ENDIF
statement for this IF block.

6.3.2 The ELSEIF Statement
The syntax of the ELSEIF statement is:

53. elseif = [label-definition] ELSEIF conditional-expression *;'.

Note that an ELSEIF statement is only legal within an IF block.

If the conditional expression is false, control passes to the following block delimiter
for this IF block. The following block delimiter may be an ELSEIF statement, an ELSE
statement, or an ENDIF statement.

If the conditional expression is true, control falls through to the following statements
which are executed up to the following block delimiter. Control then passes to the ENDIF
statement for this IF block.

30 86/PC Compiler & Language Guide

6.3.3 The ELSE Statement
The syntax for the ELSE statement is:

54. else-statement = [label-definition) ELSE ;.

Note that an ELSE statement is only legal within an IF block and is not the same thing
as the ELSE keyword in the IF statement.

If control reaches the ELSE statement the following statements are executed up to the
ENDIF statement for this IF block. Control then passes to the ENDIF statement for this

IF block.
6.3.4 The ENDIF Statement
The syntax of the ENDIF statement is:

55. endif statement = [label-definition] ENDIF *;.

Note that an ENDIF statement is only legal within an IF block. Control passes from the
ENDIF statement to the statements following the IF block.

6.4 SIMPLE STATEMENTS

The syntax of simple statements is:

56. simple-statement = agsignmeni-statement | call-statement |
goto-statement | null-statement |
return-statement | special-statement.

6.4.1 The Assignment Statement

The syntax of the assignment statement is;

57. assignment-statement = [label-definition] target-reference
[')’ target-reference}* ‘=’ expression *;’.

The right side expression [Rule 70) is assigned to all the target references. The types of the
target references must be compatible with each other and with the right side expression.

6.4.2 The CALL Statement
The syntax of the CALL statement is:

58. call-statement = [label-definition] CALL {identifier |
restricted-reference) [‘(* expression-list ‘)’] *;".

If the identifier form is used, the call is a direct call. The identifier must be the name
of an untyped procedure {Section 4.5). If the restricted reference form is used, the call
is an indirect call and the restricted reference must contain the address of an untyped
procedure. The restricted reference (Rule 89) must be to a word or pointer variable.

The expression list supplies arguments to the procedure. All arguments are passed
by value. If the call is direct, the argument expressions must match the parameters of the
procedure declaration in number and the expression types must be compatible. If the
call is indirect, the arguments are assumed to match, in number and type, the parameters
of the called procedure.

Chapter 6: Executable Statements 31

6.4.3 The GOTO Statement
The syntax of the GOTO statement is:

59. goto-statement = [label-definition] { GOTO | GO TO} identifier *;’.

The GOTO statement performs an unconditional transfer to a label. The identifier must
be a label in the procedure containing the GOTO statement or a label in a main program
(Section 4.2). The identifier must also be in the same or an enclosing naming scope.

A transfer to a label in a main program resets the stack pointer and stack base.

6.4.4 The Null Statement

The syntax of the null statement is:
60. null-statement = [label-definition] ;.

The null statement performs no operation whatsoever. However, it is counted as a
statement and, thus, may be found useful in DO CASE groups (Rule 44) and after the
THEN or ELSE keywords in IF statements (Rule 48).

6.4.5 The RETURN Statement

The syntax of the RETURN statement is:

61. return-statement = [label-definition] RETURN [expression] ‘;'.

The form of the RETURN statement with the optional expression (Rule 70) is used to
return from a typed procedure. A typed procedure should logically end with such a
return. The expression must be compatible with the type of the procedure.

The form without the expression is used to return from an untyped procedure. An

untyped procedure implicitly ends with such a return, but may contain other such
returns.

6.4.6 Special Statements
The syntax of the special statements is:

'62. special-statement = disable-statement | enable-statement |
halt-statement 1 cause-interrupt-statement.

63. disable-statement = [label-definition] DISABLE ;.

64. enable-statement = [label-definition] ENABLE ;.

The DISABLE statement and the ENABLE statement generate the equivalent machine
instructions.

65. halt-statement = [label-definition] HALT ;'

The HALT statement generates an ENABLE and then a HALT instruction.
66. cause-interrupt-statement = [label-definition] CAUSE$INTERRUPT ‘(" expres-
sion '} ';’.

The CAUSESINTERRUPT statement generates an interrupt (INT) instruction. The ex-
pression must be a constant operand (Section 7.3) from zero to seven (0-255).

32 86/PC Compiler & Language Guide

6.5 ENDINGS
The syntax of an ending is:

67. ending = [label-definition] END [identifier] *;'.

Endings are used to close modules, procedures, and DO groups. If the identifier appears

in the ending, it will be used to verify that the named module, procedure or group is the
one being closed.

6.6 LABEL DEFINITIONS
The syntax of label definitions is:

68. label-definition = identifier *:*,

Only executable statements may have statement labels.

6.7 COMPATIBLE TYPES

In assignment statements (Rule 57} and other similar situations, the right side must have
a type that can be converted into the type of the left side. Bytes, words and dwords are
compatible: bytes and words are converted to words or dwords by extending them with
zeros; words and dwords are converted to bytes or words by truncation.

Words and dwords are compatible with pointers: words and dwords are converted to
pointers by setting the pointer offset to the word or the least significant word of the dword
and the pointer base to the current data segment. Selectors are compatible with pointers:
selectors are converted to pointers by setting the base of the pointer to the selector and
the offset of the pointer to zero. Pointers are compatible with pointers. When the right
side is a constant then the constant represents a 20 bit 8086 memory address.

Selectors are only compatible with selectors. When the right side is a constant,
the constant represents an 8086 paragraph number. Integers are only compatible with
integers. When the right side is a constant, the context of the constant operand is integer.
Reals are only compatible with reals and with real constants.

6.8 CONDITIONAL EXPRESSION
The syntax of a conditional expression is:

69. conditional-expression = expression.

Even though a conditional expression has the same syntax as an expression, it may not
be evaluated in the same way,

The expression is treated as if it were made up of simpler expressions connected by
the AND, OR and NOT operators. The simpler expressions are evaluated only until the
truth of the expression is determined.

The statements which use conditional expressions check only the least significant
bit of an expression for true (1) or false {0).

7. Expressions

The syntax of an expression is:

' 70. expression = basic-expression | embedded-assignment.

71. basic-expression = logical-factor [{ OR| XOR} logical-fuctor]*.
72. logical-factor = logical-secondary [AND logical-secondary].
73. logical-secondary = [NOT]* logical-primary.

74. logical-primary = sum [relop sum].

75. relop = ‘<<=t A>T >t

76. sum = term[{‘+’|‘-"| PLUS | MINUS} termj*.

77. term = secondary [|‘*’ | /' | MOD} secondary]*.
78. secondary = [‘+'| ‘-’]* primary.

79. primary = constant | address | reference | '{* expression ‘)",

Note that by the rule for logical primary, a sequence such as X < Y < Z is not legal since
the “relop sum” sequence cannot be repeated.

7.1 OPERATORS

The table below gives the operators recognized in expressions. The table is ordered from
the highest operator precedence to the lowest with groups of operators with the same
precedence on consecutive lines. The highest precedence operators are those executed
first. The columns labelled “b w d i r ps” [byte, word, dword, integer, real, pointer or
selector) shows which operands are legal for each operator, and gives the type of the
result. A “~" means that operands of that type are not legal.

34 86/PC Compiler & Language Guide

op b w di r ps name

+ b wdir - unary plus

- b wdir -~ unary minus (negation)
* wwdir - multiplication

/ wwdir - division

MOD w w di - - remainder

+ b wdir - addition

- b widir -~ subtraction

PLUS b wd - - - add with carry

MINUS b wd - - - subtract with carry

< b b bbbob less than

<= b b b bbb less than or equal to

= b b bbbb equal to

<> b b bbbobd not equal to

>= b b bbbb greater than or equal to
> b b bbb bbb greater than

NOT b w d - - - bitwise NOT (one's complement)
AND b wd - - — bitwise AND

CR b wd - - - bitwise OR

XOR b wd - - - bitwise exclusive OR

The operand type for binary operators is determined by combining the types of the two
operands as shown by the next table. As before, a “~" means that the combination is not

legal.

byte
word
dword
integer
real -
pointer -
selector -

I g5 o
B

1
H
|
|
1
[

I =V = Ty =Py | = B
I -
|
|
!

|
|

i
L]
|

i

|
|
|
}
e
l

7.2 RELATIONAL OPERATORS
The relational operators

< <= - <> >=)

compare all the legal combinations shown in the above tables. The result of the relational

operation is a byte with the value true (0FFh) or false (0).

7.3 CONSTANT OPERANDS
A constant operand is

® a constant;

Chapter 7: Expressions 35

the builtin functions SIZE, LENGTH, or LAST;

the builtin functions LOW, HIGH, UNSIGN, and INT when their operand is a
constant;

the builtin function DOUBLE when its operand is a byte constant; or

an operation with constant operands.

The type of a constant operand depends on its context.

If a constant operand is used in a place where only an integer would be legal, the
value of the constant operand is treated as if it were an integer. When the integer operand
is a number, its value must be 0 to 32767. If the integer operand is really an operation
between constant operands, then the operation becomes an integer operation and the
context of its operands is integer.

7.4 EMBEDDED ASSIGNMENTS
The syntax of an embedded assignment is:
80. embedded-assignment = target-reference ‘:=' basic-expression.

The type of an embedded assignment is the type of the basic expression. The type of the
target-reference must be compatible (Section 6.7) with the type of the basic expression.

7.5 ADDRESSES
The syntax of an address is:
81. address = [‘@1'"} [inexact-reference | long-constant].
82. long-constant = ‘’ expression [',” expression]* ‘)".
A long constant acts like a DATA initialization (Rule 20) of a byte array.
7.6 REFERENCES
The syntax of a reference is:

83. reference = basic-reference | explicit-based-reference |
function-reference.

84. Dbasic-reference = elementary-reference ['.' elementary-reference]*.

85. elementary-reference = identifier [’ expression ‘J’].

7.6.1 Function Reference

The syntax of a function reference is almost like the syntax of an elementary reference.

86. function-reference = identifier ['(’ expression-list ‘)’].

87. expression-list = expression [',’ expression]*.

The identifier is the name of a typed procedure and the expressions in the expression
list are the arguments. The arguments must be compatible with the formal parameters of
the function.

36 86/PC Compiler & Language Guide

7.6.2 Assignment Target Reference
The syntax of a target reference is:

88. target-reference = reference.

If the target reference is a function reference (Rule 86), the function ¢an only be one of
the builtin pseudo-functions:

OQUTPUT STACKPTR LOW HIGH

STACKBASE OFFSET$0F SELECTOR$OF

See Chapter 8 for further information.

7.6.3 Restricted Reference
The syntax of a restricted reference is:

89. restricted-reference = identifier ['. identifier]*.

Restricted references appear in the BASED attribute, the iterative DO statement and the
indirect CALL statement.

7.6.4 Inexact Reference
The syntax of an inexact reference is just like the syntax of a basic reference:
00. inexact-reference = basic-reference.

An inexact reference can be a reference to an array or to a structure as well as to a
simple variable. An inexact reference to a member of an array of structures need not
have an index for the structure. If the index is missing, it is assumed to be zero. Inexact

references appear in addresses (Rule 81) and in the SIZE, LENGTH, and LAST builtin
functions (Chapter 8).

7.6.5 Explicitly Based Reference
The syntax of an explicitly based reference is:
91. explicit-based-reference = {basic-reference |
_ ‘(" expression ‘)’} {'->" basic-reference] *.
Each basic reference following the arrow must be to a variable with the BASED attribute
{Rule 31). If the based item was declared with an implicit base, that base is ignored,

The base itself cand be a word, dword, pointer, or selector. When the base expression
is an absolute number, that number is treated as a pointer constant. A variable based on
an absolute is like a variable AT an absolute (Rule 18). However, it is optimized like any
other based reference.

7.6.6 Identifiers.
An identifier is:

92. identifier = letler {letter | decimeal-digit | *_" | ‘$’]*.

93. letter = A)VBICIDIEIFIGIHIITJIKILIMIN]|OI
PIQIRISITIUIVIWIXIYIZ

Chopter 7; Expressions 37

An identifier may consist of a maximum of 31 characters. Dollar signs (“$"), which may

be used freely for readability, are not saved as part of the identifier and do not count
toward the maximum.

An upper-case letter and its lower-case form are considered equivalent.

7.7 CONSTANTS
A constant is:

94. constant = string | number,

95, string = ‘'’ string-character* *'’.

96. string-character = °*''’ | printing-character-other-than-apostrophe.
97, number = binary-number | octal-number | decimal-number |

hex-number | floating-point-number,
98. binary-number = binary-digit [binary-digit1‘$’]* B.
99. binary-digit = 01 1.
100. octal-number = octal-digit [octal-digitl‘$']* { 01Q]} .
101. octal-digit = binary-digit 121314151617,
102. decimal-number = decimal-digit [decimal-digit|‘$’]* [D].
103. decimal-digit = octal-digit | 81 9.
104. hex-number = decimal-digit [hex-digit|‘$'] H.
105. hex-digit = decimal-digit | A|B}{CID!E]1F.

106. floating-point-number = decimal-number ‘.’ [decimal-number] [E[+|-]decimal-
number].

Dollar signs [“$") may be freely used between digits in numbers for readability,

8. Builtin Identifiers and Functions

The compiler recognizes builtin identifiers that are equivalent to typed procedures, un-
typed procedures and pseudo-functions. Pseudo-functions are like untyped procedures
but appear on the left of assignment statements. The compiler also recognized the builtin
array variable MEMORY.

In the following description, the builtin identifiers are given as they would appear
in the context of simple assignment or call statements;

Untyped procedures appear in call statements.

¢ Typed procedures appear on the right of an assignment and the left indicates the
result expected from the procedure.

® Pseudo-functions appear on the left of an assignment statement and the right
gives the type of the values that can be assigned to them.

Most builtin procedures and pseudo-functions have arguments. Arguments can generally
be expressions. The few exceptions are constants or references. Where arguments are
described as byte or word, either byte, dword, or word expressions may be used since a

word or dword can always be truncated to a byte and a byte can be extended with zeros
to be a word or dword.

8.1 SIZE OF VARIABLES

LENGTH, LAST and SIZE are functions that yield constants. The constants are like
numbers in that values from 0 - 255 have type byte and values from 256 - 65535 have
type word. Their argument has the syntax of an inexact reference (Rule 90).

con = SIZE (ref)
con = LENGTH (ref)
con = LAST (ref)

The SIZE function gives the size in bytes of the referenced item.

The LENGTH function gives the number of elements in the referenced item. If it is
not an array then the length is one.

The LAST function gives the index of the last element in the referenced item. If it is
not an array then the index is zero.
8.2 TYPE CONVERSION

The INT, SIGNED, DOUBLE, UNSIGN, FIX, and FLOAT functions change the type of
their argument.

40 86/PC Compiler & Language Guide

integer = INT (word)
integer = SIGNED (word)
word = DOUBLE (byte)
dword = DOUBLE (word)
word = UNSIGN (integer)
integer = FIX (real)
real = FLOAT (integer)

8.3 SHIFT AND ROTATE

The bits argument and count argument may be either bytes or words. The result type
will be of the same type as the first argument,

bits = SHL (bits, count)
bits = SHR (bits, count)
bits = ROL (bits, count)
bits = ROR (bits, count)
bits = SCL (bits, count)
bits = SCR (bits, count)

integer = SAL (integer, count)
integer = SAR (integer, count)

SHL and SHR shift bytes,words, or dwords. Bits shifted out go into the carry. Zeroes are
shifted in.

ROL and ROR rotate bytes, words, or dwords. Bits rotated out go into both the other
end of the item and into the carry.

SCL and SCR also rotate bytes, words, or words but they include the carry in the bits
rotated. The bits shifted out of the item go into the carry and the bits shifted out of the
carry go into the other end of the item.

SAR shifts an integer to the right. Bits shifted out go into the carry. Bits shifted in
are the same as the sign bit.

SAL shifts an integer to the left. It operates just like SHL.

8.4 REFERENCING SUBFIELDS

HIGH and LOW reference the two bytes of a word or the two words of a dword.
SELECTOR$OF and OFFSET$OF reference the base and offset parts of a pointer. HIGH,
LOW, SELECTOR$OF and OFFSET$OF can be used as a normal functions or as pseudo-
functions. When HIGH or LOW is used as a pseudo-function, its argument must be a
reference to a word or dword variable. When SELECTORS$OF or OFFSET3$OF is used as
a psettdo-function, its argument must be a reference to a pointer variable.

byte = HIGH (word)
word = HIGH {dword)
byte = LOW (word)

word = LOW (dword)
selector = SELECTOR$OF {pointer)
word = OFFSET3OF (pointer)

HIGH used as a function returns the high half of its argument. LOW used as a function
returns the low half of its argument. SELECTOR$OF used as a function returns the

T

Chapter 8: Builiin Identifiers and Functions 41

base part of its argument. OFFSET$OF used as a function returns the offset part of its
argument.

HIGH (word ref) = byte

HIGH (dword ref) = word

LOW (word ref) = byte

LOW (dword ref) = word

SELECTOR$0F (pointer ref) = selector
OFFSET$OF (pointer ref) = word

HIGH used as a pseudo-function assigns the value of the right side expression to the high
half of the referenced word or dword and leaves the low half unchanged.

LOW used as a pseudo-function assigns the value of the right side expression to the
low half of the referenced word or dword and leaves the high half unchanged.

SELECTORS$OF used as a pseudo-function assigns the value of the right side expres-
sion to the base part of the referenced pointer and leaves the offset part unchanged.

OFFSET$O0F used as a pseudo-function assigns the value of the right side expression
to the offset part of the referenced pointer and leaves the segment part unchanged.

8.5 CONSTRUCTING A POINTER

The BUILD$PTR builtin function constructs a pointer from a words and a selector.

pointer = BUILD$PTR (selector,word)

8.6 THE STACK POINTER AND STACK BASE

STACKPTR and STACKBASE reference the hardware stack pointer and stack base regis-

ters, STACKPTR and STACKBASE can be used as normal functions or as pseudo-
functions.

word STACKPTR
word STACKBASE
STACKPTR = word
STACKBASE, = word

STACKPTR used as a function returns the current value of the stack pointer register.
STACKBASE used as a function returns the current value of the stack base register.

STACKPTR used as a pseudo function assigns the word value of the right side
expression to the stack pointer register. STACKBASE used as a pseudo function assigns
the word value of the right side expression to the stack base register.

8.7 DECIMAL ADJUSTMENT
The DEC function performs a decimal adjust on its argument.

byte = DEC (byte)

6.8 ABSOLUTE VALUE

The IABS and ABS functions returns the absolute value of their arguments.

42 86/PC Compiler & Language Guide

integer = IABS (integer)
real = ABS (real)

8.9 SQUARE ROOT AND PI

The SQRT function returns the square root of its argument. The PI function returns the
value of pi accurate to 19 decimal digits.

SQRT (real)
Pl

real
real

8.10 TIME DELAYS
The TIME procedure causes a time delay proportional to the value of its argument.
call TIME (word)

8.11 STRING OPERATIONS

String operations operate on bytes or words as indicated by their names. They all have
a length argument which gives the maximum number of items to process.

The length argument can be a byte, word, or dword. The addresses of the bytes or
words to process are given by the source and destination arguments. The source and
destination can be pointers or types that can be converted to pointers.

8.11.1 String Move

The string move procedures move bytes or words from their source to their destination.
The reverse forms of the string move procedures start at the last item in their source and
destination instead of the first.

call MOVB (source,destination, length)
call MOVW (source,destination, length)
call MOVRB (source,destination, length)
call MOVRW (source,destination, length)

The MOVE procedure moves bytes. It operates just like MOVB but its arguments are in
a different order.

call MOVE (length, source,destination)

8.11.2 String Set

The string set procedures move the value of their first argument into every item in their
destination string.

call SETB (byte,destination, length)
call SETW (word, destination, length)

8.11.3 String Translation

The XLAT procedure translates the bytes in the source string and places them in the
destination string. The table argument gives the address of a byte array of up to 256
bytes. The translation is performed using each byte in the source string as an indexto a
byte in the table.

Chapter 8: Builtin Identifiers and Funciions 43

call XLAT (sourcé, destination, length, table)

8.11.4 String Find and Skip

The second argument of the find and skip functions is a byte or word which is compared
1o the items of the source string.

The find functions compare each item until an equivalent one is found then they
return the index of that item.

The skip functions compare each item until a different one is found then they return
the index of that item.

The reverse find and skip functions search starting with the last item in the string.

If the entire string is checked without satisfying the condition, an index of OFFFFh
is returned.
word = FINDB (sdurce, byte, length)
word = FINDW (source,word, length)

word = FINDREB (source,byte, length)
word = FINDRW (source,word, length)
word = SKIPB (source,byte, length)
word = SKIPW (source,word, length)
word = SKIPRBE (=ource,byte, length)
word = SKIPRW (source,word, length)

8.11.8 String Compare
The left and right arguments are pointers or words.

Items from the left string are compared to items from the right string until they are
not equal; then the index of the unequal items is returned. If the left and right strings
are the same, then an index of OFFFFh is returned.

word = CMPB (left,right, length)
word = CMPW (left,right, length)

8.12 FLAG VALUES

The flag functions return the values of the machine flags.

byte = CARRY
byte = ZERO
byte = SIGN
byte = PARITY

The FLAGS function references the hardware flags register. FLAGS can be used as a
normal function or as a pseudo-function.

word = FLAGS
FLAGS = word

FLAGS used as a function returns the current value of the flags register. FLAGS used as
a pseudo-function assigns the word value of the right side expression to the flags register.

44 86/PC Compiler & Language Guide

8.13 INPUT AND OUTPUT

The argument to INPUT and QOUTPUT is a byte or word specifying one of the hardware
ports. If the argument is a byte constant, more compact code is generated. INPUT is a
byte function which reads a byte from one of the hardware ports. INWORD is a word
function which reads a word from a pair of the hardware ports. QUTPUT and OUTWORD
are pseudo-functions that may only appear on the left of an agsignment. OUTPUT writes
the byte value of the right side expression to one of the hardware ports. QUTWORD
writes the word value of the right side expression to a pair of the hardware ports.

byte INPUT (word)
word INWORD (word)
OUTPUT (word) = byte
OUTWORD (word) = word

n

8.14 MULTIPROCESSOR SYNCHRONIZATION

The LOCKSET builtin function provides a software lock for multiprocessor
synchronization. The first argument to LOCKSET is a word or pointer address of a byte
variable. The second argument to LOCKSET is a byte. LOCKSET stores the its second
argument in the byte variable and returns the old value of the variable. The exchange

of the new value for the old value is performed as one uninterruptable operation using
the XCHG instruction.

byte = LOCKSET (pointer, byte)

8.15 ADDRESSING INTERRUPT PROCEDURES

The SET$INTERRUPT procedure and the INTERRUPT$PTR function are used to address
the interrupt entry point of procedures declared with the interrupt attribute. The first ar-
gument of SET$INTERRUPT is an interrupt number. It must be a constant between 0 and

255. The argument of INTERRUPT$PTR and the second argument of SET$INTERRUPT
must be the name of an interrupt procedure.

call SET3INTERRUPT (con, hame)
pointer = INTERRUPT$PTR (name)

SET$INTERRUPT assigns a pointer to the interrupt entry point of the named interrupt
procedure to an interrupt vector. INTERRUPT$PTR returns a pointer to the interrupt
entry point of the named interrupt procedure.

8.16 SETTING THE 8087 MODE

The SET$REAL$MODE procedure sets the mode word of the 8087.

call SET$REAL$MODE (word)

8.17 THE MEMORY ARRAY

MEMORY is an external byte array of unknown size. It can be used like any other array
variable except that it cannot be the argument to SIZE, LENGTH, and LAST.

A. 86/PL and PL/M-86 Differences

86/PL is a superset of PL/M-86 and most differences are extensions to the PL/M-86

language. However, there are some restrictions in the areas where the compiled code
interacts with the 8086 interrupts.

A.1 EXTENSIONS TO PL/M-86
86/PL extends PL/M-86 by relaxing restrictions and by adding new features.

A.1.1 Reserved Words

86/PL has no reserved words, not even EOF. A statement which begins with one of the
following words:

DO IF FROCEDURE ENABLE

END ELSEIF DECLARE DISABLE

GO ELSE CALL HALT

GOTO ENDIF RETURN CAUSEINTERRUPT
UNDO

is assumed to be the statement which begins with that word. All other statements
are assignment statements.
A.1.2 Declare Statement

Attributes, the array specifier, the based specifier, and the type specifier can be in any
order. All attributes except LABEL, LITERALLY, AT, INITIAL, and DATA may appear
within a factored list.

The number in the array specifier can be replaced by a ‘*' if the array is based or
external. The star signifies an unknown dimension for the array.

The variable in the based specifier can be replaced by a ‘*’. The star signifies a based
declaration with no implicit base defined.

One consequence of the new rules for the order of attributes is that the declaration
of a based array can be written as:

DECLARE x (*) BASED ¥y BYTE;
instead of

DECLARE x BASED y (10) BYTE;

46 86/PC Compiler & Language Guide

which looked like x was based on the 10'th element of y.

A member of a structure can have the STRUCTURE data type. The name of a structure
member can be **’. Such a member occupies space but cannot be referenced.

Externals have their own scope between the scope of builtin procedures and the
module scope. This means that a variable can be declared first EXTERNAL and then
redeclared PUBLIC without generating an error. For example, a module which contains:

DECLARE xxx BYTE EXTERNAL ; /* from an include file */

followed later by:
DECLARE xxx BYTE PURBLIC ;

will not generate an error in 86/PL but will in PL/M-86. It is therefare possible in 86/FL
but not in PL/M-86 to include, in every module of a program, a single file which contains
all the external declarations for the program.

A.1.3 The Interrupt Attribute

The interrupt number in the interrupt attribute is optional. If an interrupt number is not
given, an entry is not made in the interrupt vector.

A.1.4 Restricted Expressions

A restricted expression (Rule 25) is an expression formed from constant expressions and
constant location references.

A constant expression may contain any operators except PLUS and MINUS. The
operands in a constant expression must be constants, constant expressions or builtin
functions which are constant. The SIZE, LENGTH and LAST builtin functions are always
constant. The HIGH, LOW, DOUBLE, INT, and UNSIGN builtin functions with constant
arguments are also constants.

The INTERRUPE$PTR, SELECTOR$OF and OFFSET$0OF builtin functins are constant
location references when their argument is a constant or a relocatable address.

A location reference may be formed with the *.' operator or the ‘@ operator. The
location reference may be to a variable or a long constant.

This less restrictive definition of a restricted expression allows some very useful
declarations such as:

DECLARE xxx(*) BYTE DATA(LENGTH (xxx)-1, ‘'string')
which is a character string preceded by its length, or the declaration:
DECLARE xxx(2) POINTER DATA(@('s1',0), @('s2',0))

which is a pointer array initialized to the addresses of character strings.

A.1.5 Explicitly Based Variables

An explicit base may be specified in a variable reference. An explicitly based variable
can have the form:

reference -> based-reference
or for more flexibility:

(expression) -> based reference

Appendix A: 86/PL and PL/M-86 Differences 47

Since in the first example the reference part can itself be explicitly based, a reference of
the form:

reference -> based-reference -> based-reference

is legal and has the effect of following a chain through memory.

A.1.6 Builtin Functions as Assignment Targets

The builtin functions HIGH, LOW, SELECTOR$0F and OFFSET$OF may be used as
assignment targets. A statement of the form:

HIGH {(word-reference) = expression ;

assigns the byte value of expression to the high byte of the word reference. Likewise, a
statement of the form;

LOW (reference) = expression ;

assigns the byte value of expression to the low or only byte of reference.

A1.7 The IF Block
A series of statements of the form:

IF expression ;

one or more statements
ELSEIF expression ;

one or more statements
ELSE ;

one or more statements
ENDIF ;

is equivalent to;

IF expression THEN

Do ; :
one or more statements
END ;
ELSE
IF expression THEN
DO
one or more statements
END ;
ELSE
DO
one or more statements
END ;

Note that in the IF block, ELSEIF, ELSE, and ENDIF are separate statements and not part
of the syntax of the IF statement.

A.1.8 The UNDQO statement

‘The UNDO statement jumps to the statement which immediately follows a DO block.
If UNDO is used with no argument, the immediately containing DO block is the one
jumped out of. If there is an argument as in:

48 86/PC Compiler & Language Guide ﬁ‘)

UNDOQ XXXXX ;

then the DO block is the containing one with the name given by the argument.

A.2 UNSUPPORTED PL/M-86 FEATURES
The calculation of the stack size is not supported.

The NOINTVECTOR control is not supported but no interrupt vector entry is made
for interrupt procedures that do not have an interrupt number.

The 8087 emulator is not supported. The 8087 support functions
INIT$REAL$SMATH$UNIT
GET$REAL$ERROR
SAVESREAL$STATUS
RESTORE$REAL$STATUS

are not supported.

B. Error Messages

The 86/PC compiler will detect a number of error situations and issue appropriate error
messages. The various types of error messages and their associated return codes or
completion status codes are described in this Appendix.

B.1 WARNINGS

Warnings are generated by 86/PC when a potential error has been encountered, even
though an unambiguous and probably correct choice of actions is made. Under UNIX or
PC-DOS, a code of one is returned. Under VMS, a warning completion status is returned.

B.2 ERRORS

Errors are generated by 86/PC when a statement contains one or more errors that are
serious enough that the compiler cannot continue processing the statement. Under UNIX
or PC-DOS, a code of two is returned. Under VMS, an error completion status is returned.

B.3 SEVERE ERRORS

These errors are the most severe errors that the user should encounter in normal
operation. Severe errors are errors that the compiler cannot recover from, and they cause
immediate termination of the current compilation. These errors fall into two general
classes. They may be caused by some dynamic or static space overflow within the com-
piler, and the solution is to reduce the size and/or complexity of the program. Or, they
may indicate some problem with the environment within which 86/PC runs. /O errors
generally fall into this category. Under UNIX or PC-DOS, a code of three is returned.
Under VMS, a fatal completion status is returned.

B.4 FATAL ERRORS

Fatal errors indicate an internal 86/PC failure, They should never be encountered by the
user. Under UNIX or PC-DOS, a code of four is returned. Under VMS, a fatal completion
status is returned.

B.5 LIST OF ERROR MESSAGES

Error messages which may be issued by the compiler are shown below. The initial letter
indicates the severity of the error.

E ADDRESS WRAPAROUND
F ARG COUNT REQUEST

50 86/PC Compiler & Language Guide

tr:mm*n-a'-::mmmmmmmmmmmuﬂmmm'ﬁwmmmmmm

ARGUMENTS NEEDED

ARRAY ATTRIBUTE IS INCOMPATIBLE

AT ATTRIBUTE IS INCOMPATIBLE

AT LEAST ONE CASE REQUIRED

ATTRIBUTE CAN NOT BE USED WITHIN A PROCEDURE
ATTRIBUTES INCOMPATIBLE WITH PARAMETER

BAD BUS FILE (FIX TO ABS)

BAD BUS FILE (SEG FIX)

BAD BUS FILE (SELF FIX)

BAD BUS FILE CONTENT (FIX SEG)

BAD BUS FILE CONTENT (FIX-UP TO NON-MEM)

BAD BUS FILE CONTENT (FMT OF)

BAD BUS FILE CONTENT (SYM OPND)

BAD MACRO TYPE WHILE WRITING

BASE VARIABLE IS UNDECLARED

BASED ATTRIBUTE IS INCOMPATIBLE

BUILTIN IS NOT ADDRESSABLE

BYTE OR WORD REQUIRED _

BYTE WORD OR INTEGER REQUIRED

CALL STACK OVERFLOW; EXPRESSION TOO COMPLEX
CAN NOT BE NESTED WITHIN EXTERNAL

CAN NOT BE NESTED WITHIN EXTERNAL PROCEDURE

CAN NOT BE NESTED WITHIN REENTRANT OR INTERRUPT

CAN'T CREATE FORK FOR: name
CAN’'T DECLARE EXIT HANDLER
CAN'T FIND COMPILER PHASE: name
COMPILER CONTROL SYNTAX
CONSTANT EXPRESSION REQUIRED
CONSTANT OVERFLOW

mmmmmmmmmmmmmmmmmwm'ﬁ'ﬁm'ﬁmm-ﬂmmm

Appendix B: Error Messages

CONSTANT REQUIRED

CONTROL IS OUT OF PLACE

CONTROL STACK OVERFLOW
CONTROL STACK UNDERFLOW

COULD NOT MOVE ARGUMENT
COULDN'T CREATE DICT FILE
COULDN'T OPEN DICT FILE

CREATING FILE MIGHT ERASE SOURCE FILE: name
CURRNT HAS UNKNOWN LOCATION
DANGLING NODE

DATA ATTRIBUTE IS INCOMPATIBLE
DICT OVERFLOW

DIGIT NOT APPROPRIATE TO NUMBER BASE
DIMENSION OF ZERO IS NOT ALLOWED
DO EXPECTED

DUPLICATE DECLARATION

DUPLICATE EXTERNAL DECLARATION
DUPLICATE LABEL DEFINITION
DUPLICATE MEMBER DECLARATION
DUPLICATE PARAMETER NAME
DUPLICATE PROCEDURE NAME
DYNAMIC MEMORY OVERFLOW
ELEMENT REFERENCE REQUIRED
ELSEIF FOLLOWING ELSE

END DOES NOT MATCH ACTIVE BLOCK
END OF ELEMENT EXPECTED

END OF FILE EXPECTED

END OF LINE EXPECTED

END OF STATEMENT EXPECTED

51

52 86/PC Compiler & Language Guide

E
S
E
E
E
E
E
E
E
E
E
E
E
E
E
E
F
F
E
5
E
E
E
E
E
E
E
E
E

ENDIF EXPECTED

EOF BEFORE END OF MODULE

EOF IN QUOTED STRING

EQUAL EXPECTED

EXPLICIT ARRAY DIMENSION REQUIRED
EXPRESSION SYNTAX

EXTERNAL ATTRIBUTE IS INCOMPATIBLE
EXTERNAL CAN NOT BE INITIALIZED

FAR ATTRIBUTE IS INCOMPATIBLE
FIXED-POINT DIVIDE OVERFLOW

GOTO TARGET NOT DEFINED

GOTO TARGET NOT REACHABLE

IDENTIFIER EXPECTED

IDENTIFIER TOO LONG, TRUNCATED

ILLEGAL CHARACTER

ILLEGAL CHARACTER IN QUOTED STRING
ILLEGAL OPERATOR IN PERFORM CONSTANT OPERATION
IMPOSSIBLE STATE TABLE ACTION!!
INCOMPATIBLE OPERAND MODES

INIT STACK OVERFLOW

INITIAL ATTRIBUTE IS INCOMPATIBLE
INITIAL VALUE DOES NOT MATCH DATA TYPE
INTEGER REQUIRED

INTERRUPT ATTRIBUTE IS INCOMPATIBLE
INTERRUPT PROCEDURE CAN NOT BE TYPED
INTERRUPT PROCEDURE CAN NOT HAVE PARAMETERS
INTERRUPT PROCEDURE REQUIRED

INVALID ASSIGNMENT TARGET

INVALID BASE SPECIFIER FOR CONSTANT

m'rsvu’-n':jmmmmmmmmmwmmmmmmmmmmmmmm

Appendix B: Error Messages 53

INVALID COMPILER CONTROL LINE
INVALID COMPILER CONTROL LINE (FILENAME EXPECTED)
INVALID CONSTANT - STRING TOO LONG
INVALID DIGIT IN NUMBER

INVALID EMBEDDED ASSIGN

INVALID INDEX MODE

INVALID INDEX VARIABLE -

INVALID INDIRECT CALL

INVALID INTEGER OPERAND

INVALID NUMERIC CONSTANT

INVALID RETURN IN MAIN PROGRAM
INVALID USE OF A LABEL

INVALID USE OF OUTPUT

INVALID USE OF PROCEDURE OR LABEL
LABEL TYPE IS INCOMPATIBLE

LEFT PARENTHESIS EXPECTED

LEXIC STACK OVERFLOW

LEXIC STACK OVERFLOW (ADD CASE)
LEXIC STACK OVERFLOW (EMBEDDED ASSIGN)
LEXIC STACK OVERFLOW (PUSH]

LITERAL STACK UNDERFLOW

LITERALLY TYPE IS INCOMPATIBLE

LONG INITIAL VALUE NOT SUPPORTED
LONG REQUIRED

LOST SYNCHRONIZATION

LOST SYNCHRONIZATION 1

LOST SYNCHRONIZATION 2

LOST SYNCHRONIZATION 3

MAXIMUM LITERALLY NESTING EXCEEDED

54 86/PC Compiler & Language Guide

MISPLACED STATEMENT

MISSING RIGHT PAREN

MISSING STANDARD ERROR FILE NAME
MODULE NAME IS NEEDED

MORE THAN 255 VALUE NUMBERS

MORE THAN ONE SUBSCRIPT

MULTIPLE ARRAY ATTRIBUTES

MULTIPLE AT ATTRIBUTES

MULTIPLE BASED ATTRIBUTES

MULTIPLE DATA OR INITIAL ATTRIBUTES
MULTIPLE MODULE NAMES ARE NOT ALLOWED
MULTIPLE PROCEDURE NAMES ARE NOT ALLOWED
MULTIPLE PROCEDURE TYPE DEFINITIONS
MULTIPLE TYPE DEFINITIONS

E

E

5

E

5

E

E

E

E

E

E

E

E

E

E NAME IS NOT A LABEL
E NAME IS NOT A REFERENCE

E NAME IS NOT A STRUCTURE

E NAME IS NOT A VALUE

E NAME IS NOT AN ARRAY

E NAME IS NOT AN IDENTIFIER

E NAME IS NOT BASED

E NAME IS NOT DEFINED

E NAME IS NOT MEMBER

E NO BASE VARIABLE DEFINED

E NO FILE NAME GIVEN TO INCLUDE
E NO MATCHING BLOCK

S NO SOURCE FILE GIVEN

F NODE SIZE TOO LARGE

S

NODE STACK OVERFLOW

m'ﬁmmmmmmmmmmwmmwmwmmmmmmmhﬂmmm

Appendix B: Error Messages

NOT WITHIN A BLOCK

NUMBER EXPECTED

OPERAND MODES INCOMPATIBLE WITH OPERATOR
ORIGIN SYNCHRONIZATION

OUTPUT BUFFER OVERFLOW

POINTER CONSTANT TOO LARGE

POINTER OR SELECTOR REQUIRED

POINTER REQUIRED

POP STMT STRUCTURE: STACK UNDERFLOW
POP STMT STRUCTURE: UNKNOWN BLOCK TYPE
PREMATURE END OF FILE

PREMATURE END-OF-FILE

PROCEDURE NAME IS NEEDED

PROCEDURE NESTING LIMIT EXCEEDED

PUBLIC ATTRIBUTE IS INCOMPATIBLE

PUBLIC IS INCOMPATIBLE WITH EXTERNAL AT
PUSHING ILLEGAL STATEMENT STRUCTURE
REAL REQUIRED

REAL STACK OVERFLOW

RECURSIVE LITERALLY

REENTRANT ATTRIBUTE IS INCOMPATIBLE
REFERENCE REQUIRED

REQUIRED TOKEN MISSING: identifier
RESTRICTED ADDRESS CAN NOT BE BASED
RESTRICTED ADDRESS REQUIRED

RESTRICTED CONSTANT EXPRESSION REQUIRED
RESTRICTED EXPRESSION REQUIRED

REUSABLE TYPDEF FAILED

RIGHT PARENTHESIS EXPECTED

55

56 86/PC Compiler & Language Guide

SEGMENT WITH NO NAME

SEGMENT WRAPAROUND

SELECTOR ADDRESS 1S NOT SUPPORTED
SELECTOR REQUIRED

SIMPLE VARIABLE REQUIRED

SOURCE LINE IS TOO LONG TO PROCESS
STATE STACK UNDERFLOW

STATEMENT CAN NOT BE LABELED
STRING EXPECTED

STRING TOO LONG

STRING TOO LONG FOR CONSTANT
STRUCTURE NESTING LIMIT EXCEEDED
STRUCTURE TYPE IS INCOMPATIBLE
TEMPORARY STACK OVERFLOW

F

E

E

E

E

E

F

E

E

E

E

S

E

S

E THEN OR SEMICOLON EXPECTED
E TO REQUIRED

E TOO FEW ARGUMENTS

E TOO MANY ARGUMENTS

E TOO MANY INCLUDE DIRECTORIES
S TOO MANY LEXIC BLOCKS

E TOO MANY REAL ARGUMENTS
S TOO MANY TYPE DEFINITIONS
S TREE BUFFER OVERFLOW

S TYPDEF RECORD TOO LONG

E TYPE DEFINITION IS REQUIRED

E TYPED PROCEDURE REQUIRED

S UNABLE TO CREATE STANDARD ERROR FILE: name
S UNABLE TO REDIRECT STANDARD ERROR FILE: name
E

UNCLOSED CONDITIONAL ASSEMBLY CONSTRUCTS

R T < B = T <> D <> O = T = T~ T T 7 - B B < B < B =

Appendix B: Error Messages

UNDECLARED PARAMETER
UNKNOWN COMPILER CONTROL
UNKNOWN COMPILER CONTROL TYPE
UNKNOWN INCOMING MACRO TYPE
UNKNOWN LEAF

UNKNOWN OPTION: option

UNKNOWN RELOCATABILITY
UNRECOGNIZED JUMP TYPE
UNSIGNED CONSTANT EXPRESSION REQUIRED
UNTYPED PROCEDURE REQUIRED
VALUE RETURNED FROM SUBROUTINE
WORD ADDRESS REQUIRED

WORD OR POINTER REQUIRED

WRONG NUMBER OF ARGUMENTS
WSTACK OVERFLOW

WSTACK UNDERFLOW

57

C. Formal Definition of Meta-Language

Chapter 3 provided an informal definition of the meta-language used to describe the
syntax of 86/PL. This appendix provides the formal definition of the meta-language.

1. grammar = rule*.

2. rule = variable ‘=’ definition *,’.

3. definition = alternate ['1’ alternate]*.

4. alternate = sequence*.

5. sequence = {unit | grouping | option}[*’)].

6. grouping = ‘[’ definition [**'] ‘}".
7. option = ‘[’ definition [**’] ‘]".
8. unit = variable | literal.

9. variable = Ic-leiter [le-letter | digit | *-']*.

10. literal = '’ {“ ' '’ | character] * ' '’ | uc-letter*.
i1. lec-letter = any-lower-case-leiter.
12. uc-letter = any-upper-case-letter.

13. digit = any-decimal-digit.

14. character = any-character-except-quote.

The variables lc-letter, uc-letter, digit, and character have been loosely defined for the

sake of simplicity. Formally, they can be defined by enumerating the characters which
actually form their definition.

Within a literal, an upper-case letter and the corresponding lower-case letter are
equivalent,

D. Multiply and Divide for Double Words

The only external calls generated by 86/PC are for multiply, divide, and MOD for
the DWORD data type. The compiler uses LQ.DWORD_MUL for multiply and
LQ-DWORD_DIV for both divide and MOD.

D.1 ROUTINES FOR INTEL 8086 ASSEMBLER

name xx-dword_mul_div

assume cs:xx.ml.div.code
xx.mul_div_code segment public 'CODE'

public 1lg-dword_mul

public lg.dword._div

MULTIPLICATION

(dx:ax) <- {dx:ax) * (di:ex)

P L LA TR

g.dword_mul proc far

xchg ax, si
xchg ax, dx
mul cxX
xchg ax, bx
mov ax, si
mul di
add bx,ax
mov ax, si
mul ex
add dx, bx
ret

lg.dword_mul endp

DIVISION

(dx: ax) <- (dx:ax) / (di:ex)
{(si:di) <- (dx:ax) mod (di:ex)

#wenk* No check is made for division by zero. *%**xs

Let N, D, Q, R be in the range [OFFFFFFFFh, 10000h], and let
n, d, g, r be in the range [OFFFFh, 0].

62 86/PC Compiler & Language Guide

lg-dword.div proc far
sub si,si
or dx, dx
jne dword_num
or di,di
jne word.dword

; Case I: n/d = gqremr

;
word_word:

div cx
xchg di, dx
ret

v

H Case II: n/D = 0 rem {(r=n)

word_dword:

mov di,ax
nov ax, dx
ret
dword_num:
or di,di
jne dword_dword

¥
H Case III: N/d = Qrem T
dword_word:

xchg ax, dx

mov bx, dx
mov dx, di
div ex
xchg ax,bx
div ex
mov di,dx
nov dx, bx
ret

H Case IV: N/D = qrem R

; The largest gquetient is OFFFFFFFFh / 000010000H = OFFFFh
; and the largest remainder is OFFFFFFFEh mod OFFFFFFFFh = OFFFFFFFEh

dword.dword:
xchg dx, di

mov bx, cx
nov cx, 16
xloop:
shl ax, 1
rcl di,1
rcl 5i,1
sub di,bx
sbb si,dx
jnl xhi
xlow:
add di, bx
ade si,dx
jmp short xact

xhi:

Appendix D: Multiply and Divide for Double Words 63

inc ax
xact:

loop xloop

mov dx, ex

ret

lg.dword.div endp
xx-mul_div_code ends

end

D.2 ROUTINES FOR TEKTRONIX 8086 ASSEMBLER

name dword.mul_div
section i.dword.mul_div, class=INSTRQQ

2lobal lg.dword_mul
global lq.dword.div
; MULTIPLICATION

H (dx:ax) <- (dx:ax) * (di:cx)

1q_dword._mul

xchg ax, si
xchg ax, dx
mul (34
xchg ax,bx
mov ax, si
mul di
add bx, ax
mov ax, si
mul cxX
add dx, bx
rets

; DIVISION

H (dx: ax} <- {(dx:ax) / (di:ex)
H {(si:di) <- (dx:ax) mod (di:cx)

; wxxxxx No check is made for division by zero. *s*x»»

H Let N, D, Q, R be in the range [OFFFFFFFFh, 10000h], and let
H n, d, q, r be in the range [0FFFFh, 0].

lg.dword.div

sub si,si
or dx, dx
jne dword_num
or di,di
jne word_dword

H Case I: n/d = qremr

64 86/PC Compiler & Language Guide

*

word_word div cx
xchg di,dx
rets

H Case II: n/D = 0 rem (r=n)

¥
word.dword mov di,ax

mov ax, dx
rets
dword.num or di,di
jne dword_dword

5 Case III: N/d = Qremr

dword_word xchg ax, dx

mov bx, dx
moev dx,di
div ox
xchg ax, bx
div cx
mov di, dx
mov dx, bx
rets

H Case IV: N/D = q rem R

; The largest quotient is OFFFFFFFFh / 000010000H = OFFFFh
; and the largest remainder is OFFFFFFFEh mod OFFFFFFFFh = OFFFFFFFEh

dword_dword xchg dx, di

mov bx, cx
mov cx,#16
xloop shl ax,#1
rel di,#1
rel si,#1
sub di, bx
sbb si,dx
jnl xhi
xlow add di,bx
ade si,dx
Jnmpsh xact
xhi ine ax
xact loop xloop
L}
mov dx, ex
rets

end

E. Installing on VAX/VMS

This chapter discusses the method of installing an 86/PC delivery tape on a VAX under
the VMS operating system. The discussion assumes that the delivery is made on a 9-
track magnetic tape. If some other medium is used, the same general method should

apply. Any special instructions will be found on an installation memorandum packed
with the delivery.

This discussion assumes that the installation is being performed by an experienced
VMS systems programmer.

E.1 SUPPORTED OPERATING ENVIRONMENT

This version of 86/PC requires a Digital Equipment Corporation VAX or Micro-VAX and
the VMS operating system, release 4.3 or later.

E.2 RESTORING THE TAPE
The delivery tape is in standard VMS backup format. It may be restored by

$ alloc mta tape
$ mount/foreign/den=1600 tape
$ backup/rew/log tape:86pc.bkp [.86pc...]

This creates a subdirectory of the current directory called 86ds.

E.3 DEFINING LOGICAL NAMES

A logical name must be defined to specify the installed location of the 86/PC components.
Suppose that restoring the tape (Section E.2) created the 86ds directory as a subdirectory
of sys$disk:[tools]. The following definition should be made:

$ define sys$86as sys$disk: [tools. Bépc]

If only a few people will be using 86/PC, this definition may be placed in those person’s

LOGIN.COM files. If many people will be using 86/PC, the definition should be made
system-wide.

686 86/PC Compiler & Language Guide

E.4 INSTALLING THE NATIVE COMMANDS

86/PC is intended to be installed as a VMS native command and executed using standard
DCL syntax. A CLD file is provided which defines the invocation syntax to the DCL
processor and a HELP file is provided which can provide on-line help. '

The command is installed by the SET COMMAND DCL command. To install 86/PC,
use

$ set cdmmand sys$86pc: 86pc

Help on the use of 86/PC may be obtained by

$ help/lib=sys$86pc: 86pc 86pc

1If only a few people will be using 86/PC, these definitions may be placed in those person’s
LOGIN.COM files. If many people will be using 86/PC, the definitions should be made
system-wide by modifying the system DCL command tables.

F. Installing on UNIX Systems

This chapter discusses installing the 86/PC compiler on various UNIX systems. Only
binary installations are discussed in this chapter. If you are installing a UNIX source
version of 86/PC, see Appendix I.

This discussion assumes that the installation is being performed by an experienced
UNIX user or systems programmer.

F.1 SUPPORTED OPERATING ENVIRONMENT

Generally, the UNIX version of 86/PC requires a 16-bit or 32-bit, byte-addressing machine
which runs a true Version 7, System IlI, System V, or Berkeley 4.2/4.3 bsd UNIX or XENIX
operating system. Only the most common of these are supported in binary form.

F.2 BINARY INSTALLATION
The delivery medium for a binary installation will normally consist of a 9-track magnetic
tape. In some cases, however, it may be one or more diskettes or other special types of

recording media.

In general, installation is performed by logging in as root, mounting the delivery tape,
and entering

cd /
tar xv

If other methods are required, a memorandum describing them will accompany the
delivery.

The result of the installation will be to place the driver for 86/PC into the /ust/bin
directory. The individual phases of 86/PC will be placed in /usr/lib/86pc.

F.3 SELECTING 86/PC FINAL OUTPUT DEFAULT
As delivered, the 86/PC compiler will produce object modules in Intel standard object

module format by default. In some versions, this may be changed to produce Tektronix
LAS instead by

68 86/PC Compiler & Language Guide

cp /usr/lib/86pc/86ptfo /usr/lib/86pc/86pfo

To restore Intel object as the default, do

¢p /usr/lib/86pc/86pifo /usr/lib/86pc/86pfo

F.4 TAILORING WITH ENVIRONMENT VARIABLES

The 86/PC compiler can be extensively tailored by using environment variables. So as
not to clutter the environment, this method is best when only a few simple changes are

desired. The methods described in Section F.5 are preferred when extensive changes are
to be made.

F.4.1 Global Tailoring Changes

Many parts of 86/PC use temporary files (by default located in /usr/imp) and many need
to find the location of the directory (by default fusr/lib/86pc) where various phases reside.
The following environment variables may be used to change these locations:

A86PCTMP 1 this variable is defined, its contents will be used as a prefix for all

temporary file names. For example, if it contains “/tmp/”, all temporary
files will be created in the /tmp directory.

AB6PCLIB If this variable is defined, its contents will be used as a prefix for all phase
names., For example, if it contains “/u3/tools/dev/”, 86/PC will look in the
{u3ftools/dev directory for each of the compiler phases.

F.4.2 Local Tailoring Changes

Environment variables may be used to provide arguments to 86/PC. The contents of the
variable “A86PCHEAD” will be processed as arguments to 86/PC before the arguments
on the invocation line are processed. After processing the invocation line arguments, the
contents of the variable “A86PCTAIL” are processed as arguments.

For example, the definition

A86PCHEAD="-p58 -Xs.plm -Xo.o0bj -X1.1lis"
export A86PCHEAD

will cause all 86/PC compilations to use a listing page depth of 58 lines, a source suffix
of “.plm”, an object suffix of “.obj”, and a listing suffix of “.lis".
F.4.3 Specifying Maximum Number of Arguments

86/PC component has been configured to process a reasonable number of arguments.
Sometimes, however, this predetermined maximum may not be enough. If the variable

Appendix F: Installing on UNIX Systems 69

“A86PCMAXA" is defined, its contents are taken as a decimal integer giving the maximum
number of arguments to allow for 86/PC.

Note that these variables cannot be used to increase the maximum beyond any limits
which may be imposed by the operating system.

F.5 TAILORING WITH AN INITIALIZATION FILE

Very detailed tailoring for 86/PC may be performed by use of a file named 86pc.ini.
When any 86/PC is executed, this file is searched for in the following places (in order):
the current directory and in /usr/lib/86pc. If there is an A86PCINI environment variable,
its contents are used as the complete path to the file instead.

If it is found, it is opened and read, searching for lines which begin with the name of
the command (i.e. “86pc”) followed by a single colon. The remainder of each such line
is processed just as if it were a set of invocation options appearing before the options on
the invocation line. When the last such line is processed, the actual invocation options
are processed. Finally, the file is searched for lines beginning with the command name
followed by iwo colons and these lines are processed as invocation options.

Lines are processed in order of appearance, and any double-colon lines must follow
all single-colon lines.

F.5.1 Examples
The 86pc.ini line

86pc: -p58 -Xs.plm -Xo.obj -X1.lis

will establish a page depth of 58 lines, source suffix of “.plm”, object suffix of “.obj",
and listing suffix of *.1is” for all 86/PC invocations.

G. Installing on PC-DOS

This chapter discusses the method of installing the 86/PC compiler on an IBM PC com-
puter under the PC-DOS operating system.

This discussion assumes that the installation is being performed by someone who is
familiar with installing system software under DOS.

G.1 SUPPORTED OPERATING ENVIRONMENT

This version of 86/PC requires an IBM PC-XT or PC-AT or equivalent computer and the
PC-DOS or MS-DOS operating system, Version 3.1 or later.

G.2 RESTORING THE DISKETTE

The 86/PC delivery consists of one or more diskettes in standard DOS copy format. By
default, the various components reside in the “\86pc.lib” directory which must be created
by

mkdir \86pc. 1lib

To restore the diskettes, first set the current directory to be 86pc.lib by

cd \86pc. 1ib

and then restore the diskettes by performing

COopy a: *, * |

for each.

G.3 MAKING THE TEMPORARY DIRECTORY

86/PC needs to create temporary files while operating. These are created in the directory
“‘“tmp”. If this directory does not exist, it should be created by

72 86/PC Compiler & Language Guide

mkdir \tmp

G.4 INSTALLING 86/PC IN THE SEARCH PATH

The 86/PC command should be in a directory which is in your search path. The simplest
way to do this is just to place the “86pc.lib” directory in the search path. If your
AUTCEXEC.BAT file does not have a path statement, add

path c:\86pc.lib

to the file. If there already is a path statement, add “;c\86pc.lib” to the end of the
statement. It might, for example, then look like

path c:\bin;c:\86pc. lib

A slightly more complex, but more efficient, method is to place only the command
name in a directory that is in the search path. Many systems have, for example, a *“\bin”
directory to contain commands and this is a good place to move the 86/PC command. It
is only necessary to move the 86pc.exe file to the “\bin” directory, leaving the subphases
in the ‘“\86pc.lib” directory.

G.5 SELECTING 86/PC FINAL OUTPUT DEFAULT

As delivered, the 86/PC compiler will produce object modules in Intel standard object

module format by default. With some versions, Tektronix LAS may be produced instead,
by

copy \86pc.1lib\86ptfo. exe \86pc. lib\B6pfo. exe

To restore Intel object as the default, do

copy \86pc.lib\86pifo. exe \86pc. lib\B6pfo. exe

G.6 TAILORING WITH ENVIRONMENT VARIABLES

The 86/PC compiler can be extensively tailored by using environment variables. So as
not to clutter the environment, this method is best when only a few simple changes are
desired. The methods described in Section (.7 are preferred when extensive changes are
to be made.

G.6.1 Global Tailoring Changes

86/PC uses temporary files (by default located in \tmp) and needs to find the location of
the directory (by default \86pc.lib) where various phases reside. The following environ-
ment variables may be used to change these locations:

Appendix G: Installing on PC-DOS 73

A86PCTMP If this variable is defined, its contents will be used as a prefix for all

temporary file names. For example, if it contains “d:A\tmp\”, all temporary
files will be created in the \tmp directory on device “d:".

A86PCLIB If this variable is defined, its contents will be used as a prefix for all phase

names. For example, if it contains “d:\tools\”, 86/PC will look in the \tools\
directory on device “d:"” for each of the compiler phases.

G.6.2 Local Tailoring Changes

Environment variables may be used to provide arguments to 86/PC. The contents of the
variable “A86PCHEAD” will be processed as arguments to the 86/PC before the arguments
on the invocation line are processed. After processing the invocation line arguments, the
contents of the variable “A86PCTAIL” are processed as arguments.

For example, the definition

set ABGPCHEAD=-p58 -Xs.plm -Xo.obj -X1.lis

will cause all 86/PC compilations to use a listing page depth of 58 lines, a source suffix
of “.plm”, an object suffix of “.obj"”, and a listing suffix of “.lis".

G.6.3 Specifying Maximum Number of Arguments

86/PC has been configured to process a reasonable number of arguments. Some-
times, however, this predetermined maximum may not be enough. If the variable
“AB6PCMAXA” is defined, its contents are taken as a decimal integer giving the maxi-
mum number of arguments to allow for 86/PC.

Note that these variables cannot be used to increase the maximum beyond any limits
which may be imposed by the operating system.

G.7 TAILORING WITH AN INITIALIZATION FILE

Very detailed tailoring for 86/PC may be performed by use of a file named 86pc.ini. When
B6/PC is executed, this file is searched for in the following places (in order): the current
directory, \86pc.lib, ¢A86pc.lib, \, and ci. If there is an AS6PCINI environment variable,
its contents are used as the complete path to the file instead.

If it is found, it is opened and read, searching for lines which begin with the name of
the command (i.e., “86pc™) followed by a single colon. The remainder of each such line
is processed just as if it were a set of invocation options appearing before the options on
the invocation line., When the last such line is processed, the actual invocation options
are processed. Finally, the file is searched for lines beginning with the command name
followed by two colons and these lines are processed as invocation options.

Lines are processed in order of appearance, and any double-colon lines must {ollow
all single-coion lines.

G.7.1 Examples
The 86pc.ini line

74 86/PC Compiler & Language Guide ')

B6pc: -p58 -Xs.plm -¥o.obj -X1.1lis

will establish a page depth of 58 lines, source suffix of “.plm”, object suffix of “.obj”,
and listing suffix of *.lis” for all 86/PC invocations.

H. Installing on Tektronix 856x

This chapter discusses the method of installing an 86/PC delivery diskette on a Tektronix
856x under the TNIX operating system.

This discussion assumes that the installation is being performed by an experienced
TNIX user or systems programimer.

H. SUPPORTED OPERATING ENVIRONMENT

This version of 86/PC requires a Tektronix 8560, 8561, or 8562 computer and the TNIX
operating system, Version 2 or later.

H.2 RESTORING THE DISKETTE

The delivery diskette is in standard TNIX fbr format. To install it, log in as root and
enter

install

If questions appear on the screen during installation, answer them appropriately.

The result of the installation will be to place the driver for 86/PC into the /usr/bin
directory. The individual phases of 86/PC will be placed in /usr/lib/86pc.

H.3 SELECTING 86/PC FINAL OUTPUT DEFAULT
As delivered, the 86/PC compiler will produce object modules in Intel standard object

module format by default. To change this default so that Tektronix LAS is produced
instead, do

¢p /usr/lib/86pc/86ptfo /usr/lib/86pc/86pfo

To restore Intel object as the default, do

76 86/PC Compiler & Language Guide

¢p /fusr/lib/86pc/86pifo /usr/lib/86pc/86pfo

H.4 TAILORING WITH ENVIRONMENT VARIABLES

The 86/PC compiler can be extensively tailored by using environment variables. So as
not to clutter the environment, this method is best when only a few simple changes are

desired. The methods described in Section H.5 are preferred when extensive changes are
to be made.

H.4.1 Global Tailoring Changes

86/PC uses temporary files (by default located in /usritmp) needs to find the location
of the directory (by default /ust/lib/86pc) where various phases reside. The following
environment variables may be used to change these locations:

A86PCTMP If this variable is defined, its contents will be used as a prefix for all
temporary file names. For example, if it contains “/tmp/”, all temporary
files will be created in the /tmp directory.

A86PCLIB I this variable is defined, its contents will be used as a prefix for all phase
names. Far example, if it contains “/u3/tools/dev/”, 86/PC will look in the
/u3/tools/dev directory for each of the compiler phases.

H.4.2 Iocal Tailoring Changes

Environment variables may be used to provide arguments to 86/PC. The contents of the
variable “A86PCHEAD” will be processed as arguments to 86/PC before the arguments
on the invocation line are processed. After processing the invocation line arguments, the
contents of the variable “A86PCTAIL” are processed as arguments.

For example, the definition

AB86PCHEAD="-p58 -Xs.plm -Xo.obj -X1.lis"
export ABEPCHEAD

will cause all 86/PC compilations to use a listing page depth of 58 lines, a source suffix
of “.pIm”, an object suffix of “.obj”, and a listing suffix of “.lis”.

H.4.3 Specifying Maximum Number of Arguments

86/PC has been configured to process a reasonable number of arguments. Some-
times, however, this predetermined maximum may not be enough. If the variable
“AB6PCMAXA" is defined, its contents are taken as a decimal integer giving the maxi-
mum number of arguments to allow for 86/PC.

Note that these variables cannot be used to increase the maximum beyond any limits
which may be imposed by the operating system.

Appendix H: Installing on Tektronix 856x 77

H.5 TAILORING WITH AN INITIALIZATION FILE

Very detailed tailoring for 86/PC may be performed by use of a file named 86pc.ini.
When any 86/PC command is executed, this file is searched for in the following places
(in order): the current directory and in fusr/lib/86pc. If there is an A§6PCINI environment
variable, its contents are used as the complete path to the file instead.

If it is found, it is opened and read, searching for lines which begin with the name of
the command (i.e., “86pc”) followed by a single colon. The remainder of each such line
is processed just as if it were a set of invocation options appearing before the options on
the invocation line. When the last such line is processed, the actual invocation options
are processed. Finally, the file is searched for lines beginning with the command name
followed by two colons and these lines are processed as invocation options,

Lines are processed in order of appearance, and any double-colon lines must follow
all single-colon lines.

H.5.1 Examples
The 86pc.ini line

86pc: -p58 -Xs.plm -Xo.obj -X1.1lis

will establish a page depth of 58 lines, source suffix of “.plm”, object suffix of “.obj”,
and listing suffix of “.lis” for all 86/PC invocations.

I. Source Installation on UNIX Systems

This appendix discusses installation of a source version of 86/PC on a UNIX system. This

is a complicated process and should only be performed by an experienced UNIX systems
programmer.

This chapter only discusses the actual building and installing of the 86/PC compiler.
Appendix F should be read for a discussion of various post-installation tailoring options.

I.1 SUPPORTED OPERATING ENVIRONMENT

Generally, the UNIX version of 80/DS requires a 16-bit or 32-bit, byte-addressing machine
which runs a true Version 7, System III, System V, or Berkeley 4.2/4.3 bsd UNIX or
XENIX operating system. Because of the lack of compatibility among the various systems,
installing of a source version of 86/PC may require changes to the programs in order to
make them operate correctly. Sich changes are the responsibility of the installer.

I.2 RESTORING THE DELIVERY TAPE
The 86/PC compiler is distributed in a manner intended to be very portable. It does

not depend upon the availability of any particular tape archiving program. This chapter

describes the format of the delivery tape and discusses the steps required for restoring
such a tape.

1.2.1 Tape Format

The 86/PC software is distributed on one reel of 9-track, standard magnetic tape contain-
ing several files:

1. A small C source program, named “sarin”, which may be used to extract the
source files from the archives contained in the other tape files;

2. One or more archive {iles containing the source.

1.2.2 Restoring the Tape

A distribution in the form of an industry-standard magnetic tape will have the format:

80 86/PC Compiler & Language Guide

source for sarin utility
<EQF>

source archive #1

<EQF>

source archive #2

<EQF>

<EOQF>
<EQF>

All data blocks on the tape are 512 bytes long. A tape will have one or more source
archives,

The files may be restored by a shell sequence such as:

(dd of=sarin.c;
dd of=sarci;
dd of=sarc2;

i </dev/rmt0

where /dev/rmi0 is the name of the raw interface for the tape drive on which the delivery
tape is mounted.

1.2.3 Compiling the Sarin Utility

The sarin utility may be used to extract the source files from the archive. It should be
compiled by

¢¢ sarin.e¢ -o sarin

which will leave an executable version of the utility in the file “sarin”.

Because all tape blocks are 512 bytes long, it is possible that the last block of the
sarin.c file will contain one or more trailing ASCII nulls. This should not cause any
problems. However, if the C compiler complains about illegal characters which appear
to be at the end of the file, the shell sequence

ed sarin.c
W

q

should remove the trailing nulls.

I.2.4 Extracting Source Files From the Archives

Once the sarin utility has been compiled, it may be used to process the archives.

Appendix I Source Installation on UNIX Systems 81

1.2.4.1 Structure of the Source Archives

The archives consist of a sequence of lines, each terminated by a newline. Lines whose
first three characters are “$" are control lines. The possible control lines are:

[$]C commentary

which causes the commentary to be displayed when the archive is processed;

[{$]D directory-name

which causes the named directory to be created by “mkdir"”;

[$]F file-name

which causes the named file to be created and opened;

{s}E

which causes the file named in the last “$F" control line to be closed; and

{8}z

which terminates the archive, Any line which is not a control line is source; it is written
to the file named in the last “$F"” control line.

1.2.4.2 Processing the Source Archives

The commands

sarin -t <sarcil
sarin -t <sarc2

will display a listing of the names of all archived files and directories. The listing will
be written on the standard error file.

Actual extraction of the source files may be performed by the commands

82 86/PC Compiler & Language Guide

sarin <sarcl
sarin <sarc2

These will create the necessary directories and subdirectories and restore all source files.
A progress log will also be displayed on the standard error file.

During extraction, warning messages will be issued if any of the directories or sub-
directories already exist, but extraction will proceed using the existing directories.

1.3 INSTALLING THE 86/PC COMPILER
This chapter discusses the procedures to produce a working 86/PC from the delivery tape.

L.3.1 Restoring the 86/PC Delivery Tape

The 86/PC delivery tape has two archive files. The restoration process is described in
Section [.2.

Restoring the archives will create the following directory structure:

g6pec.d (root directory for 86pc)
common. d: (directory for common C source)
pl. d: {directory for pl source)
p2.d: (directory for p2 source)
pc. d: {(directory for driver source)
pcg. d: {directory for pcg source)
pfo. d: {directory for pfo source)
pjo.d: (directory for pjo source)
pp. d: (directory for pp source)
psym. d (directory for psym source)
ptfo.d {(directory for ptfo source)
pxrf.d {directory for pxrf source)

1.3.2 Modifying the 86/PC Shell Scripts

All examples in this chapter assume that you have already restored the delivery tape and
extracted the source files. It is also assumed that your working directory is “86pc.d”.
The following shell scripts are provided:

pcdefs.sh which defines things for the other shell scripts
pccompile.sh which compiles everything

pclink.sh which links everything

pcinstall.sh which installs everything

pecprint.sh which prints everything

Before proceeding with the generation and installation, examine these shell scripts

and make any required changes as indicated by their comments and the following
descriptions.

Appendix I Source installation on UNIX Systems 83

1.3.2.1 Modifying pcdefs.sh
This shell script sets up definitions of shell variables used in other shell scripts.

1.3.2.1.1 Installation Directory for the Driver

The shell variable I is set to the directory where the 86/PC driver is installed. As
distributed, the shell variable is defined as

I=/usr/bin

1.3.2.1.2 Installation Directory for the Compiler Phases

The shell variable P is set to the directory where the 86/PC driver expects to find its

phases. The library will also be installed there. As distributed, the shell variable is
defined as

P=/usr/lib/86pc

This corresponds to the default definition of PDIR in some of the C source code. If the
definition of P is changed, then PDIR must also change. This is done through the C

compilation flags.
1.3.2.1.3 C Compilation Flags

The shell variable C is set to the flags to be used for C compilations, As distributed, the
shell variable is defined as

C='-I../common.d'

This sets the search path for include {iles.

1.3.2.1.3.1 Temporary File Directory

TDIR is defined in some source modules to be “/fusr/tmp/”. This is the name of the
directory in which 86/PC should create temporary files. Some UNIX systems, notably
PWB, do not normally have the “/usr/tmp"” directory. For such systems, TDIR should be
redefined — usually to *“/tmp/”. This is done by adding

=-DTDIR="/tmp/"
to the definition of C.

1.3.2.1.3.2 Phase Installation Directory

PDIR is defined in some source modules to be “/usr/lib/86pc/”. This is the name of the
directory in which the 86/PC driver expects to find its phases. If you wish to change this
for some reason, PDIR should be redefined. This is done by adding

84 86/PC Compiler & Language Guide

-DPDIR="/new/dir"
to the definition of C. Note that the shell variable P must also be redefined.

1.3.2.1.3.3 Treatment of Warning Messages

When compiling with some C compilers, a number of warning messages will be issued.
These messages relate to different interpretations of the proper way to use the C language
in certain circumstances; they can be ignored. These warnings can be suppressed by
adding -w to the definition of C.

1.3.2.1.3.4 C Compiler Optimization

Most C compilers can provide processing to attempt to produce more optimal code; this
may be specified by adding -O to the definition of C. It is possible that this will produce
a smaller, faster 86/PC. Considering the problems frequently encountered with the use of
such optimizers, we do not recommend this unless you have first successfully installed
and tested 86/PC without optimization.

1.3.2.1.3.5 Other C Compiler Options

Any other desired C compiler options of local interest (usually none} may be specified
by adding to the definition of C.

1.3.2.1.4 Specifying Linker Options

The shell variable L is set to the flags to be used by the linker. As distributed, the shell
variable is defined as

L='-1"

1.3.2.1.4.1 Split /D Linking

When the -i option is used, the linker produces an executable image (text file] using
separate code and data spaces. This is advisable for best performance of 86/PC except on
the VAX under Berkeley UNIX. Berkeley UNIX uses a demand paging mechanism and
the split i/d concept is not relevant to that environment. When generating 86/PC under
Berkeley UNIX, remove the “-i”” from the definition of L.

1.3.2.1.4.2 Other Linker Options

Any other desired linker options of local interest [usually none) may be specified by
adding to the definition of L.

1.3.2.2 Modifying pccompile.sh

The local name of the C compiler should replace *“cc¢” if necessary,

1.3.2.3 Modifying pclink.sh

The local name of the C compiler should replace “cc” if necessary.

Appendix I: Source Installation on UNIX Systems 85

L3.2.4 Modifying pcinstall.sh

This shell script, among other things, installs the 86/PC manual pages (provided as nroff
source). This should be checked for compatibility with your installation’s standards.
1.3.2.5 Modifying pcprint.sh

This shell script uses the “pr” program. If there is a more appropriate local routine, that
may be used instead.

1.3.3 Using the 86/PC Shell Scripts

The following sections describe how to generate 86/PC by running the shell scripts that
have been examined and, if necessary, modified.

1.3.3.1 Compiling the Source
The command

sh -v pccompile.sh

compiles all of B6/PC.

1.3.3.2 Linking the Object
Next, the object is linked to make the executable modules by running pclink.sh.

1.3.3.3 Installing 86/PC

86/PC is next installed by running pcinstall.sh. This installs the driver, all the phases and
the manual pages according to the directory assignments made in pcdefs.sh. It should
be run while logged on as the owner of these directories.

1.3.3.4 Listing 86/PC

A listing of the source of 86/PC may be produced by:

sh -v pcprint. sh >peprint

Index

-a invocation option 3
-B invocation option 5
-d invocation option 4, 5
-E invocation option 5

-i invocation option 4, 5
-J invocation option 4
-K invocation option 6
-1 invocation option 3, 4
-M invocation option 3
-0 invocation option 4
-p invocation option 4, 5
-5 invocation option 3, 4
-t invocation option 4, 5
-TT invocation option 5
-V invocation option 6
-X invocation option 3
-Xi invocation option 5
-Xl invocation option 5
-Xp invocation option 4
-Xs invocation option 4, 5

A file suffix &
.q file suffix 3
.5 file suffix 4

/{CROSS_REFERENCE qualifier 7
/MEBUG qualifier 7

/DEFINE qualifier 9
/INCLUDES qualifier 9

/LIST qualifier 7, 8
/MACHINE_CODE qualifier 8
MMODEL qualifier 8
/NOCROSS_REFERENCE qualifier 7
/NODEBUG qualifier 7
/NOLIST qualifier 8
NOMACHINE.CODE qualifier 8
MNOOBJECT qualifier 8
NOOPTIMIZE qualifier 8

88 86/PC Compiler & Language Guide

/OBJECT qualifier 8

fOPTIMIZE qualifier 8
/SYNTAX qualifier 9

/tmp directory 83

fusr/bin directory (TNIX) 75
fust/bin directory {UNIX) 67
fusr/lib/86pce directory 83
fusr/lib/86pe directory {TNIX) 75
fusy/lib/86pe directory (UNIX) 67
fusi/tmp directory 83

186 model option 8
286 model option 8

8087 emulator not supported 48
8087 mode setting 44

86/PC delivery tape, restoring 82
86/PC installation 85

86/PC invocation 3, 6

86/PC manual pages 85

86/PC overall operation 10

86/PC phases 83

86/PC shell scripts 82

86/PC, listing 85

86p1 compiler phase 10

86p2 compiler phase 10

86pc.d directory 82

86pc.ini initialization file (DOS) 73
86pc.ini initialization file (TNIX) 77
86pc.ini initialization file (UNIX) 69
g6pc.lib directory (DOS) 71

BBpcg compiler phase 10

86pfo compiler phase 10

86pifo compiler phase 10

86pjo compiler phase 10

§6pp compiler phase 10

86psym compiler phase 10

86ptfo compiler phase 10

86pxrf compiler phase 10

A86PCINI environment variable (DOS} 73
ABBPCINI environment variable (TNIX) 77
A86PCINI environment variable (UNIX) 69
ABS builtin 41

Absolute base 36

ADDRESS data type 24

Addresses 35

Archive structure 81

Argument files 8

Arguments 30

Arguments, maximum number (DOS) 73

Arguments, maximum number (TNIX) 76
Arguments, maximum number (UNIX) 68
Arrays 24

Assembly listing option (-a) 3

Assembly listing option (-S) 4
Assignment statement 30, 32, 39, 41, 45
Assignments, embedded 35

AT attribute 22

AT_VARIABLES option 8

BASED attribute 24, 36

Based references 36

Based variable 22, 24

Based, explicitly 46
BASED_VARIABLES option 9
Basic type attributes 24

Binary installation (UNIX) 67
Blanks 13

Block IF statement 29

BNF 15

BUILD$PTR builtin 41

Builtin for absolute value 41
Builtin for decimal adjustment 41
Builtin for stack pointer manipulation 41
Builtin for time delay 42

Builtin identifiers and functions 39
Builtin to reference memory 44
Builtins for input and output 44
Builtins for shifts and rotates 40
Builtins for size of variables 39
Builtins for string comparison 43
Builtins for string moving 42
Builtins for string operations 42
Builtins for string scanning 43
Builtins for string setting 42
Builtins for string translation 42
Builtins for subfield referencing 40
Builtins for type conversions 39
Builtins to test flag values 43
BYTE data type 24

Byte variable 40

C compiler 84

C compiler optimization 84
C compiler warnings 84

C compiler, other options 84
CALL statement 18, 30, 36
Capabilities and features 1
CARRY builtin 43

Carry machine flag 40

CASE statement 28

Index B89

90 86/PC Compiler & Language Guide

CAUSES$INTERRUPT statement 31
Class of procedures 19

CLD files (VMS) 66

CMPB builtin 43

CMPW builtin 43

CODE model option 8

Code segment 22

Codes, return 6

Comments 13

Compatible types 28, 30, 32
Compilation, conditional 12
Compile-time constants 11
Compile-time control language 10
Compile-time expressions 11
Compile-time variables 5, 9, 11
Compiler controls 10

Compiler debugging options 5
Compiler invocation 3, 6
Compiler version option (-V) &
Completion status 10
Conditional compilation 12
Conditional expression 27, 29, 32
Constant expression 46
Constant operand 23, 31, 34, 35
Constants 37

Constants, compile-time 11
Constants, signed 23
Contiguous allocation 21
Control line 10

Control, EJECT 12

Control, ELSE 12

Contral, ELSEIF 12

Control, ENDIF 12

Control, IF 12

Contrel, INCLUDE 11

Control, LIST 12

Control, NOLIST 12

Control, RESET 12

Control, SET 11

Control, SUBTITLE 12
Control, TITLE 12

Controls 10

Controls, unimplemented 13
Cross reference listing option (-x) 3

DATA attribute 22, 24

DATA model option 8

Data segment 23

DCL (VMS) 66

DCL command tables (VMS) 68
Dd utility (UNIX) 80

Index 91

Debug output 7

DEC builtin 41

Declarations 21

Declarations, factored 21
DECLARE statement 21, 45
Default file suffixes 4

Defining logical names [VMS) 85
Definition of a module 17
Delivery tape, restoring (UNIX) 79
Differences between 86/PL and PL/M-86 45
Dimension attribute 24
Directory list option [-I} 5
Directory, tmp 83

Directory, /usr/lib/86pc 83
Directory, fust/tmp 83

DISABLE statement 31

Diskette (DOS) 71

Diskette (TNIX) 75

Divide and multiply 61, 63

DO groups 27

DO statement 27

Dollar sign 37

DOS 71

DOUBLE builtin 39, 46

DWCRD data type 14, 24, 61

Editing DCL command tables (VMS) 66
EJECT control 12

Element attributes 23

ELSE control 12

ELSE statement 30, 47

ELSEIF control 12

ELSEIF statement 20, 47

Embedded assignments 35

ENABLE statement 31

END statement 27, 32

ENDIF control 12

ENDIF statement 30, 47

Endings 32

Entry point of main program 17
Environment variable tailoring (DOS) 72
Environment variable tailoring (TNIX) 78
Environment variable tailoring (UNIX) 68
Error message list 49

Error messages 49

Errors 49

Executable statements 27

Explicit base 24

Explicit base, absclute 36

Explicitly based references 38
Expression operators 33

92 86/PC Compiler & Language Guide

Expressions 33

Expressions, compile-time 11
Expressions, conditional 32
Expressions, restricted 23
Extensions 45

EXTERNAL attribute 21, 23, 24, 46
External procedures 19

External variable 22

Extracting source files (UNIX) &80

Factored declarations 21, 22
Fatal errors 49

Fbr format {TNIX) 75
Features and capabilities 1
Files, temporary 83

Final output (DOS) 72
Final output [TNIX) 75
Final output (UNIX) 67
FINDB builtin 43

FINDRB builtin 43
FINDRW builtin 43

FINDW builtin 43

FIX builtin 39

FLAGS builtin 43

FLOAT builtin 39

Formal definition of meta-language 59
Format of source 13
Format, object module 14
Function reference 18
Functions 18, 36

GET$REAL$SERROR builtin 48
Global tailoring changes (DOS) 72
Global tailoring changes {TNIX} 76
Global tailoring changes (UNIX) 68
GOTO statement 18, 31

Grammar 15

Group label 28

Group names 27

HALT statement 31

HEAD environment variable (DOS) 73
HEAD environment variable (TNIX) 76
HEAD environment variable (UNIX] 68
HIGH builtin 40, 46, 47

IABS builtin 41
Identifiers 36

IF block 29, 47

IF control 12

IF statement 28, 30
Implied base 24

INCLUDE control 11

Inexact reference 36, 39

INITIAL attribute 22, 24
Initialization file tailoring (DOS) 73
Initialization file tailoring (TNIX) 77
Initialization file tailoring (UNIX) 69
INIT$REALSMATHS$UNIT builtin 48
INPUT builtin 44

Install command (TNIX) 75
Installation, VAX/VMS 65

Installing 86/PC 85

Installing CLD files (VMS) 66

INT builtin 39, 46

INTEGER data type 24, 35

Intel OMF final output (DOS) 72
Intel OMF final output (TNIX) 75
Intel OMF final output (UNIX) 67
Internal procedures 19

INTERRUPT attribute 44, 46
Interrupt procedures 19, 44
Interrupt vector 19, 48
INTERRUPTS$PTR builtin 44, 46
Introduction 1

Invocation options 3, 7

Invoking 86/PC 3, 6

INWORD builtin 44

Iterative DO statement 28, 36

Jump optimizer option (-]} 4
JUMPS option 8

LABEL attribute 21

Label definitions 32

Label reference 31

Label, group 27

LAST builtin 39, 46

Ld options 84

LENGTH builtin 39, 46
Lines per page 4
LINE_NUMBERS option 7
Linker (1d) options B84
Linker opticons, other 84
Linking option, split i/d 84
LIS file type 8

LIST control 12

List of error messages 49
Listing 86/PC 85

Listing controls 12
Listings 8

LITERALLY attribute 22
Literals in the meta-language 15

Index 93

94 86/PC Compiler & Language Guide

Local symbol record option (-d) 4
Local symbol record option (-L) 4
Local tailoring changes {(DOS) 73
Local tailoring changes (TNIX) 76
Local tailoring changes (UNIX) 68
LOCKSET builtin 44

Logical names {VMS] 65

Long constant 23

LOW builtin 40, 48, 47
LQ.DWORD.DIV 14, 61
LQ_DWORD_MUL 14, 61

Machine flag, carry 40

Machine flags 43

Main programs 17

Manual organization 2

Manual pages, 86/PC 85

MAXA environment variable (DOS) 73
MAZXA environment variable (TNIX] 76
MAXA environment variable (UNIX) 69
Maximum number of arguments (DOS) 73
Maximum number of arguments (TNIX) 76
Maximum number of arguments {UNIX) 68
MEMORY builtin 21, 44

MEMORY model option 8
Meta-language, formal definition 59
Meta-language, introduction 15

Models of computation 8

Module definition 17

Module level 17, 19, 23, 24

Module name 17

Modules 17

MOVB builtin 42

MOVE builtin 42

MOVRB builtin 42

MOVRW builtin 42

MOVW builtin 42

Multiply and divide 61, 63

Naming scope 17, 18, 27, 29, 31
Native commands (VMS) 66
Newline character 13
NOAT_VARIABLES option 8
NOBASED_VARIABLES option 9
NOJUMPS option 9

NOLIST control 12
Non-terminal symbols 15
NOPOINTERS option 9
NOPREPROCESS_ONLY qualifier 9
NOSUBEXPRESSIONS option 8
Null statement 31

Index 95

Numeric constants 37

Object module 17

Object module format 14

Object module name format 3, 7
OFFSET$OF builtin 40, 46, 47
Operands, constant 34

Operators 33

Optimization 22

Optimization control option (-0} 4
Optimization, C compiler 84
Options to control the preprocessor 5, 9
Options, invocation 3, 7

Options, linker (Id) 84
Organization of manual 2

Other C compiler options 84
Other linker options 84

OUTPUT builtin 44

OUTWORD builtin 44

Overall operation 10

Overflow 28

P4 model option 8

P86 file type 7

Parameters of procedures 18
PARITY builtin 43

Path command (DOS) 72
Pccompile.sh shell script 82, 84, 85
Pcdefs.sh shell script 82, 83, 85
Pcinstall.sh shell script 82, 85
Pclink.sh shell script B2, 84, 85
Pcprint.sh shell script 82, 85

PI builtin 42

POINTER data type 25
POINTERS option 9
Preprocessor control options 5, 9
PREPROCESS_ONLY qualifier 9
Procedure class 19

Procedure declarations 18
Procedure parameters 18
Procedure scope 18

Procedure, typed 18

Procedure, untyped 18
Procedures 17

Procedures, external 19
Procedures, interrupt 19
Procedures, reentrant 19
Pseudo-function 39, 40, 41
PUBLIC attribute 21, 23

Public procedures 19

Q86 file type 7,8

96 86/PC Compiler & Language Guide

REAL data type 24

Recognition of statements 13
Redirecting standard error {ile 6
Reentrant procedures 19

References 35

Relational operators 34

Reserved words 13, 45

RESET control 12
RESTORE$REAL$STATUS builtin 48
Restoring delivery tape (UNIX) 79
Restoring the 86/PC delivery tape 82
Restoring the diskette (DOS) 71 '
Restoring the diskette (TNIX) 75
Restoring the tape (VMS) 65
Restricted expression 22, 23, 46
Restricted reference 24, 28, 30, 36
Return codes 6

RETURN statement 18, 31

ROL builtin 40

ROM model option 8

ROR builtin 40

Rules 15

§ 25

SAL builtin 40

SAR builtin 40

Sarin utility 80

Sarin utility {UNIX) 79
SAVE$REAL$STATUS builtin 48
SCL builtin 40

Scope of names 17, 27, 29, 31
Scope of procedures 18

SCR builtin 40

Search path (DOS} 72
SELECTORS$OF builtin 40, 46, 47
Set command DCL command (VMS) 66
SET control 11

SETB builtin 42

SETW builtin 42
SET$INTERRUPT builtin 44
SET$REAL$MODE builtin 44
Severe errors 49

SHL builtin 40

SHR builtin 40

SIGN builtin 43

SIGNED builtin 39

Signed constants 23

Simple statements 30

SIZE builtin 39, 46

SKIPB builtin 43

SKIPRB builtin 43

Index 97

SKIPRW builtin 43

SKIPW builtin 43

Source archive structure 81

Source format 13

Source listing option (-1) 3

Special statements 31

Split i/d linking option 84

SQRT builtin 42

Stack base 31, 41 °

STACK model option 8

Stack pointer 31, 41

Stack size 48

STACKBASE builtin 41

STACKPTR builtin 41

Standard error file, redirecting 6

Statement labels 21, 32

Statement labels in main programs 17
Statement recognition 13
STATEMENT_NUMBERS option 7

Status, completion 10

String constants 37

STRUCTURE attribute 25

Structure data type 46

SUBEXPRESSIONS option 8

Subroutines 18

SUBTITLE control 12

Supported operating environment (DOS) 71
Supported operating environment {TNIX) 75
Supported operating environment {(UNIX) 67, 79
Supported operating environment (VMS) 65
Symbolic listing 8

Symbolic listing option (-a) 3

Symbolic listing option (-S) 4

Syntax checking option (-s) 3

Sys$86pc logical name (VMS) 65

TAIL environment variable (DOS) 73

TAIL environment variable (TNIX) 76

TAIL environment variable {UNIX) 68

Tailoring changes, global (DOS) 72

Tailoring changes, global (TNIX) 76

Tailoring changes, global (UNIX) 68

Tailoring changes, local (DOS) 73

Tailoring changes, local (TNIX) 76

Tailoring changes, local (UNIX) 68

Tailoring with environment variables (DOS) 72
Tailoring with environment variables (TNIX) 76
Tailoring with environment variables (UNIX) 68
Tailoring with initialization files (DOS) 73
Tailoring with initialization files (TNIX) 77
Tailoring with initialization files (UNIX) 69

98 86/PC Compiler & Language Guide

Tape (VMS) 65

Tape format (UNIX) 79

Tar command {UNIX) 67

Target reference 36

Tektronix 8086 Assembler 63
Tektronix 856x 75

Tektronix LAS final output {DOS) 72
Tektronix LAS final output (TNIX) 75
Tektronix LAS final output (UNIX) 67
Temporary directory (DOS] 71
Temporary files 83

TIME builtin 42

TITLE control 12

TNIX 75

Type attributes 24

Typed procedure 18, 31, 39

UNDO statement 27, 28, 47

Unit of compilation 17

UNIX systems 67

UNSIGN builtin 39, 46

Untyped procedure 18, 30, 31, 39

Variables, compile-time 5, 9, 11
VAX 65

Version number of compiler {-V) 6
VMS 65

Warnings 49

Warnings, C compiler 84
WHILE statement 27
WORD data type 24
Word variable 40

XLAT builtin 42
ZERO builtin 43
\tmp directory (DOS) 71

