Part One

80/PL Language
80/PC Compiler

Reference Guide

Table of Contents

Chapter 1 Introduction 0 v v i e 1
1.1 Features and Capabilities 1
Chapter 2 General Information 3
2.1 Invoking 80/PC Under UNIX and PC-DOS 3
2.1.1 Nommal InvocationOptions 3

2.1.2 Preprocessor Control Options 5

2.1.3 Compiler Debugging Invocation Options 5

2,14 ArgumentFiles 00 e 5

2.1.5 Redirecting the Standard ErrorFile 6

216 ReturnCodes e e e i

2.2 Invoking 80/PCUnder VMS v v v v v v v e 6
2.2,1 Normal Invocation Options 7

2.2.2 Preprocessor Control Options 8

2.2.3 Completion Status« . . 0t 9

2.3 Overall Operation of 80/PC o 9
2.4 The 80/PC Compile-Time Control Language 9
2.4.1 Compile-Time Expressions 10

2.4.1.1 Compile-Time Variables 10

2.4.1.2 Compile-Time Constants 10

242 TheINCLUDECONTROL v v v v v v v v v v u v 10

243 TheSETControl« .. 10

244 TheRESET Control« o v v v v v v v v v 11

2.4.5 Conditional Compilation 11

246 ListingControlso 12

2.4.7 OtherControls e 12

2.5 B0/PLSource Format 000 e 12
2.5.1 Blanksand Comments 12

2.5.2 Statement Recognition 13

2.6 Object Module Format 13
2.6.1 The Run-Time Support Library 13
Chapter 3 Introduction to the Meta-Language 15
Chapter 4 Modules and Procedures 17
4.1 Module Definitions L0000 17
4.2 Main Programs & v 0 i e e e e e e e e e e e 17
4.2.1 Main Program Statement Labels ., 17

4.3 Procedure Declarations

1-ii

4.4

80/PC Language Reference Guide

Procedure Parameters

.......................... 18
45 Procedure Types v v i u e e e e e e e 18
46 ProcedureScope Lo 18
4.6.1 Public and Internal Procedures 19
4.6.2 External Procedures « « . ¢« ¢ « v vttt e 19
4.7 Procedure Class v & & v v v v e e e e e e e e e e 19
4.7.1 Reentrant Procedures « v 0 v 19
4.72 InterruptProcedures0 19
Chapter 5 DECLARE Statements '+ .. 21
5.1 Factored Declarations v v v s e e e e e e e 21
5.2 The LABEL Attribute v v i i e e e e e e 21
5.3 The LITERALLY Attribute « « v v v v v v v v .. 22
5.4 The AtAttribute e e e e 22
5.5 The DATA and INITIAL Attributes 22
5.5.1 Restricted Expressions 23
5.6 Element Attributes L . L e e e e e 23
5.6.1 The EXTERNAL Attribute 23
5.6.2 The PUBLIC Attribute « v v v .. 23
5.6.3 The BASED Attribute « « . v i v s e e 23
5.6.4 The Dimension Attribute, 24
5.6.5 The Basic Type Attributes 24
5.6.6 The STRUCTURE Attribute 24
Chapter 6 Executable Statements 25
6.1 DOGroups . . . & & v vt it v e e e e e e e e e e e e e 25
6.1.,1 TheDOStatement , ¢« . . v v v v v v v v e v o 25
6.1.2 The WHILE Statement « « v v o v v v ... 25
6.1.3 The lterative DO Statement, 26
6.1.4 TheCASE Statement « « v o o v v v v v 26
6.1.5 The UNDO Statement « . + 4 s « v v v v v« . 26
6.2 ThelF Statement« v v i v i e v e e e e e e 27
6.3 IFBlocks o i i e e e e e e e e e e e e e e 27
6.3.1 BlockIfStatemento 27
6.3.2 The ELSEIF Statement & « v v v v v v o v v o 28
6.3.3 TheELSEStatement « v v v v v v v v v o 28
6.3.4 The ENDIF Statement v v v v v e v v o 28
6.4 Simple Statements 00 0w e e e e e e e e e e e 28
6.4.1 The Assignment Statement 28
6.4.2 The CALL Statement + & v v v v v v o e e v e e 29
643 TheGOTO Statement« 29
6.4.4 TheNullStatement v v v 29
6.4.5 The RETURN Statement « « « « « v v o v o . 29
6.4.6 Special Statementso L Lo 30
6.5 Endings v 0 o 0 e e e e e e 30
6.6 Label Definitions « « « . . e e e e e e e e e e e 30
8.7 Compatible Types ¢ @ v o i i e e e 30
5.8 Conditional Expression n
Chapter 7 Expressions v v vt v, 33
7.1 Operators . . v v & v v v i e e e e e e e e e e e e e 34
7.2 Relational Operators v v v v i e oo 34

7.3 ComstantOperands e e a5
7.4 Embedded Assignments L. ... 35
7.5 Addresses L . L L L e e e e e e 35
7.6 References i i i e e e e e e e 35
7.6.1 FunctionReference 35
7.6.2 Assignment Target Reference 36
7.6.3 RestrictedReference, 36
7.6.4 ImexactReference o000 36
7.6.5 Explicitly Based Reference 36
7.6.6 Identifiers o 00 n e a6
7.7 Constants L .o e e e e e 37
Chapter 8 Builtin Identifiers and Functions 39
8.1 Sizeof Variables o oo o e 39
8.2 TypeConversion« L i v v v v e e e e e e e 40
8.3 Decimal Adjustment L. Lo e 40
84 AbsoluteValue.o e 40
8.5 ShiftandRotate e 40
8.6 Referencing Subfields, 41
87 TheStackPointer i 41
8.8 TimeDelays e e e e e e e e e e 41
8.9 String Operations v v v 0 0 0 0 e e e e e e 11
891 StringMave oL L s 41
8.9.2 String Set 0 e e e e e e e e e e e e e e e e 42
8.9.3 String Translationo, 42
8.94 StringFindandSkip 42
8.9.5 StringCompare 0 L. 42
B.10 FlagValues & o i i i e e e e e e e e e e e e e 43
8.11 Inputand Qutputo 43
B.12 TheMemoIVAITAY © « v v v v v v v v v 6 v e e v e e e e e 43
8.13 Other BuiltinIdentifiers Lo o L 43
Appendix A 80/PL and PL/M-80 Differences 45
A1 Extensions Compatible with PL/M-86 45
A1l NewDataTypes. o v v v v 0 v v v v v i v v e 45
A.1.2 New Builtin Procedures, .. 45
A1.3 The'® Qperator o e e 46
A.1.4 The CAUSE$INTERRUPT Statement 46
A.2 Extensions beyond both PL/M-80and PL/M-86 46
A21 ReservedWords 0, 46
A.2.2 DeclareStatement oL Lo 48
A.2.3 The Interrupt Attributeo 0oL, 47
A.24 RestrictedExpressions 47
A.2.5 Explicitly Based Variables 47
A.2.6 Builtin Functions as Assignment Targets 47
A27 ThelFBlock e e e e e e e e e e e e e 48
A.2.8 The UNDOstatement v oo v 48
A.3 Unsupported PL/M-80 and PL/M-86 Features 48
Appendix B Error Messages« « « v v 0 o u e e e e e e 51
B.1 Warnings o 0 0 e e e e e e e e e e e e e e e e e e 51

B.2 Errors

1-iv 80/PC Language Reference Guide

B.3 Severe Errors

............................. 51

B4 FatalErrors o .t b o e e e e e e e e e e e e e e 51

B.5 ListofErrorMessages « o . . it o e e e 51

Appendix C Formal Definition of Meta-Language 59

Appendix D Linking With Tektronix Tools 61

D.1 Writing a Linker Command File 61

D.1.1 ImportantSymbols 0., 61

D.1.2 Example1 L 00 e e 61

D13 Example2 o e e e e e e e e e 62

D.2 Interfacing to the 8540/856000 63

D.2.1 TheSVCSolution 83

D.2.1.1 InitializationRoutine 64

D.2.1.2 Four-Byte Utility Routine 64

D.2.1.3 SVCFunctionRoutines 64

D.2.1.4 Zero-ArgumentRoutines 64

D.2.1.5 One-Argument Routines (Pointer) 64

D.2.1.6 Two-Argument Routines [Byte, Pointer]85

D.2.1.7 Three-Argument Routines {Byte, Pointer, Pointer} 65

D.2.1.8 Three-Argument Routines (Byte, Byte, Pointer) 65

D.2.1.9 Three-Argument Routines [Byte, Byte, Pointer) 65

D.2.1.105VC Interface Routines 66

D.2111SVCExecutors 0 e e e e e e 66

D.3 Possible Tektronix Linker Error Messages 66

D31 SectionNames vt 66

D.3.2 TypicalErrors o 0o e e e e e 86

D.4 Assembly-Language Routines for SVC's 67

D41 UtilityRoutines00 e e 67

D42 SVCExecutors« v v v i v v e e 68

D5 80/PLRoutinesfor SVC's 0 oo e e 69
Index

1. Introduction

This portion of the Experts-PL/M™ manual describes the 80/PL™ programming language
and the operation of the 80/PC™ compiler. It is intended as a reference guide and not as

. a tutortal. It is assumed that the reader is already familiar with programming in the Intel
PL/M-80 or PL/M-86 languages.

1.1 FEATURES AND CAPABILITIES

The 80/PL language is a superset of the PL/M-86 language. However, the target machines
are the Intel 8080 and 8085 and the Zilog Z80. The Intel MCS-80/85 object module format
is used for the resulting object programs. Significant new features of 80/PL include:

Support of the WORD, INTEGER, and POINTER data types;
Support of the PL/M-86 string handling builtins;
Relaxation of most restrictions on reserved words;

Relaxation of restrictions on the ordering and factoring of items in DECLARE
statements;

Introduction of structures within structures;

Introduction of explicitly based references;

Use of the HIGH and LOW builtins as assignment targets;
Introduction of a fully-delimited IF block construct;

Introduction of an UNDQ statement for premature loop exits; and

Introduction of a new scope for external data and procedures so that external
items declared in an included file may be redeclared within a module.

See Appendix A for a complete description of the differences.

The compiler operates under the VAX/VMS ™, UNIX™, and PC-DOS operating sys-
tems.

The output of the 80/PC compiler is normally in the Intel MCS-80/85 Relocatable
Object Module Format, facilitating its use with other development tools and easing
integration of new software with existing object modules. Optionally, some versions of
the compiler can preduce output in Tektronix LAS format for use with various Tektronix
relocation and linking tools.

2. General Information

This chapter provides general information to users of the 80/PL language and the 80/PC
compiler. It includes discussions of the compiler invocation procedure, the format of the
object module, and the compile-time control language.

2.1 INVOKING 80/PC UNDER UNIX AND PC-DOS

Under the UNIX and PC-DOS operating systems, the 80/PC compiler is invoked by:

80pc [option]... file...

The normal compiler operation is to compile each file and place the resulting object
module into a file with the same name as the source file with any “.*" suffix replaced
with “.q”. If a source file does not have a suffix, the object file name is formed by
postpending “.q".

The object files are, in general, not immediately executable. They should be ul-
timately linked with the 80/PL library of support routines (Section 2.6.1) and any other

required libraries, and then bound to addresses reasonable for the final environment of
the executable program.

The normal operation of the compiler may be modified by the use of various options
as described in the following sections.

2.1.1 Normal Invocation Options
The options used in normal invocations of 80/PC are:

-F Generate inline code in some cases, rather than calls to out-of-line support

routines. This will produce a larger object module, but one which should
execute faster,

-L Generate local symbol and line number records in the object file for possible
use by a run-time debugging system. Use the source file line numbers. Do
not generate line number records for lines in include files.

-d Generate local symbol and line number records in the object file for possible

use by a run-time debugging system. Use the line numbers given in the source
listing.

-] Cause the optional jump optimization phase to be invoked. This will result

1-4 80/PC Language Reference Guide

-8

-5

-Z

-a

-X

-i

-pnnn

-Xsaaa

-Xpaaa

-Xlaaa

-Xiaaa

-XSaaag

-Xtaaa

in smaller, faster programs in many cases but will increase the compilation
time.

Turn off common subexpression optimization. This will generate less effi-
cient code.

Perform syntax checking but do not generate code or produce a “.q” file. This

option causes only the preprocessor, phase 1, and phase 2 (Section 2.3) to be
run.

Generate a symbolic, assembler-like, listing. The listing is placed in the
corresponding “.§” file.

Allow the compiler to emit code specific to the Z80. The Z80 short jumps
and word arithmetic will be used in addition to the 8080 instructions. The
extra Z80 registers are not used.

Generate a source listing and place it on the standard output file.

Generate a symbolic, assembler-like, listing and place it on the standard
output file.

Generate a source listing and a cross reference listing and place both on the
standard output file.

Generate Intel MCS-80/85 Relocatable Object Module Format. This is nor-

mally the default, but the compiler may be installed so that the “-t” switch
is the default.

Generate Tektronix LAS Object Module Format. This may be established as
the default when the compiler is installed.

nnn is an integer giving the number of lines per printed page. If this option
is not specified, a value of 66 will be used.

Specifies, as aaa, the default suffix to use for source file names that are not
given with a suffix.

Specifies, as aaa, the suffix to be used on object files in place of the default
(‘.q”.

Specifies that any listing produced will be directed to a file, instead of to
the standard output. The file will have the same name as the corresponding
source file, but with a suffix of aaa.

Specifies, as aaa, the suffix to be used on generated preprocessor output files,
instead of the default “.i*.

Specifies, as aaa, the suffix to be used on symbolic output files produced as
a result of the -S option, instead of the default “.5”.

Specifies, as aaa, the prefix to be used on all temporary file names, instead of
the default *“\tmp\” under PC-DOS or “fusr/tmp/” under UNIX. As an example,
“_Xt./* will cause temporary files to be created in the current directory {i.e.,
the one in use when 80PC is invoked).

Chapter 2: General Information 1-5

2.1.2 Preprocessor Control Options

The normal action of the compiler preprocessor phase (Section 2.3 and Section 2.4) can
be modified by:

-Dname Define name as a compile-time variable and assign it the value “-1”. The

first attempt to redefine the variable with a SET control (Section 2.4.3) will
be ignored.

-Dname=expression

Define name as a compile-time variable and assign it the value of expression.
Expression can be any valid compile-time expression (Section 2.4.1). The
operands of the expression must be constants or the names of compile-time
variables defined in preceding “-D"” options. The first attempt to redefine the
variable with a SET control {Section 2.4.3) will be ignored.

-Iist Specify directories to be searched for an INCLUDE file (Section 2.4.2) if the
file is not found in the directory of the source file. The list is a colon-separated
list of directory paths.

-E Don’t compile the source files. Instead, just run them through the preproces-
sor and place the output on the standard output file.

-P Don't compile the source files. Instead, just run them through the preproces-
sor and, for each, put the output into a corresponding “.i” file.

2.1.3 Compiler Debugging Invocation Options

These options may be useful when debugging the 86/PC compiler. Normally they should
not be used.

-Bstring Prepend string to the name of each compiler phase before executing it, thus
allowing alternate versions of the compiler to be executed.

-T Display interesting things about the compiler progress on the standard error
file.

-TT Same as the “-T” option but don’t actually call the compiler phases.

Y Display the compiler version number on the standard error file and im-
mediately exit.

-K Do not delete the compiler intermediate files which remain at the end of the
compilation.

2.1.4 Argument Files
Any command line argument may have the form

@argfile

where argfile is a file containing more arguments. This is particularly useful in cases
where more arguments are required than will fit on the original command line.

1.6 80/PC Language Reference Guide

2.1.5 Redirecting the Standard Error File

Error messages are written on the standard error file, which is usually the display screen.
This may be changed by using a command line (or argument file} argument of the form

rerrfile

where errfile is the name of the file to receive error messages. If the argument has the
form

Anerrfile

the messages will be appended to the {ile.

2.1.6 Return Codes

The compiler returns the following codes to its invoker. See Appendix B for more detailed
descriptions of these codes.

Compilation completed with no errors.
Compilation completed with warnings.
Compilation completed with errors.

Compilation terminated with a severe error.

B N s O

Compilation terminated with a fatal compiler error.

2.2 INVOKING 80/PC UNDER VMS
Under the VMS operating system, the 80/PC compiler is invoked by:

80PC [options] file-name

Command Qualifiers: Defaults:
/ [NO] CROSS_REFERENCE /NOCROSS_REFERENCE
/ [NO]DEBUG= (options) /NODEBUG

/DEFINE= (name-1list)
/INCLUDES= (directories)

/[NOJLIST [=file-spec] /NOLIST

/ [NO] MACHINE_CODE /NOMACHINE_CODE

/ [NO]JOBJECT [=file-spec] /OBJECT

/ [NO]JOPTIMIZE= (options) FOPTIMIZE=SUBEXPRESSIONS
/ [NO] PREPROCESS_ONLY /NOPREPROCESS_ONLY
/SYNTAX

J/ [NO] Z80_CODE JNOZ380_CODE

The normal compiler operation is to compile the named file and place the resulting object
module into a file with the same name as the source file but with a file type of “(Q80".
The default file type for the source file is “P80".

The object files are, in general, not immediately executable. They should be ul-
timately linked with any required libraries and then bound to addresses reasonable for
the final environment of the executable program.

Chapter 2: General Information 1-7

The normal operation of the compiler may be modified by the use of various options
as described in the following sections.

2.2.1 Normal Invocation Options

/{CROSS_REFERENCE
/NOCROSS.REFERENCE

Controls whether or not a cross-reference listing will be generated. If so, it
will appear at the end of the listing file. For /CROSS_REFERENCE to operate,
LIST must also be in effect. The default is NOCROSS_REFERENCE.

/DEBUG[=0option]
/NODEBUG

Specifies the type of debugging output to be placed in the generated object
module. The options are:

LINE_.NUMBERS generate debug records which refer to input
line numbers

STATEMENT._NUMBERS generate debug records which refer to state-
ment numbers as printed on the listing.

The two options are mutually exclusive. The default qualifier
is /NODEBUG. /DEBUG without an option 1is equivalent to
/DEBUG=STATEMENT_NUMBERS.

/LIST[=file-spec]
/NOLIST

By default, the compiler does not produce a listing. If /LIST is specified,
the compiler produces a source listing file with the same name as the input

source file but with a file type of “LIS”. This may be overridden by giving a
file-spec.

MACHINE_CODE
/NOMACHINE_CODE

MACHINE_CODE will cause the compiler to produce a symbolic, assembler-
like listing on the listing file where it will follow the source listing. This
listing is provided for information only and is not intended to be a complete
assembly-language program. The default is NOMACHINE_CODE.

/OBJECT][=file-spec]
/NOOBJECT

Controls whether or not the compiler produces an object module. The default
is /OBJECT which produces an object model that has the same file name as
the source file and a file type of “Q80".

1-8 80/PC Language Reference Guide

/{OPTIMIZE[=(options)]
/NOOPTIMIZE

/SYNTAX

/Z80_CODE

Controls whether or not the compiler optimizes the compiled program to

generate more efficient code. The options, which may appear in any order,
are

[NO]SUBEXPRESSIONS specifies elimination of common subexpres-
sions
[NOJJUMPS specifies that the compiler is to attempt

to remove dead-end and duplicate code se-
quences and to change long jumps to short
jumps where possible

[NOJINLINE.CODE specifies that the compiler is to generate in-
line code rather than call to out-of-line sup-
port routines

The default is /OPTIMIZE=SUBEXPRESSIONS.

Specifies that the compiler is to perform syntax checking, only. Code genera-
tion will not be performed an an object module will not be produced.

/NOZ80_CODE

Specifies that the compiler is allowed to generate code specific to the Z80.
The Z80 short jumps and word arithmetic instructions will be used in addi-
tion to the 8080 instructions.

2.2.2 Preprocessor Control Qptions

The normal action of the compiler preprocessor phase (Section 2.3 and Section 2.4) can
be modified by:

/DEFINE=(name[=expression],...)

Defines each name as a compile-time variable and assigns it the value of the
expression (or the value “-1” if an expression is not given). The first attempt
to redefine the variable with a SET control (Section 2.4.3) will be ignored.
The expression can be any valid compile-time expression (Section 2.4.1). The
operands of the expression must be constants or the names of compile-time
variables defined previously in the /DEFINE qualifier.

AAINCLUDES=({directory,...)

Specify directories to be searched for an INCLUDE file (Section 2.4.2) if the
file is not found in the directory of the source file. The directories are
searched in the order given.

Chapter 2: General Information 1-9

/PREPROCESS_ONLY
/NOFPREPROCESS.ONLY

Specifies that the source file is not ta be compiled but is to be run through
the preprocessor with the output placed on the listing file. The default is
/NOPREPROCESS_ONLY.

2.2.3 Completion Status

On completion, the compiler returns a standard VMS completion status of success,
warning, or severe/fatal. See Appendix B for more detailed descriptions of these codes.
2.3 OVERALL OPERATION OF 80/PC

The 80/PC compiler consists of a driver, named 80pc, and a number of phases which
perform the actual compilations. The phases used in a normal compilation, in the order
executed, are:

80pp The preprocessor which handles the compile-time control language described
in Section 2.4.

80p1 The initial syntax analyzer and declarations processor.

80p2 The final syntax analyzer, semantics processor, and run-time storage al-
locator.

80pcg The code generator.
80pjo The optional jump optimizer.
8opfo The final output generator.

80psym The symbolic lister, used when the “-$8" option (“MACHINE.CODE”
qualifier) is present.

80pxrf The cross-reference lister, used when the “-x" option (“/CROSS_REFERENCE"
qualifier] is present.

2.4 THE 80/PC COMPILE-TIME CONTROL LANGUAGE

If the first character of a line is a “$”, the line is known as a contrel line. This is true
even if the line is within a comment or a quoted string. Such lines are used to request
inclusion of additional source files and to control conditional compilation.

The general format of a control line is:

$([control}...

where control has the general format:

keyword [operand]

1-10 80/PC Language Reference Guide

The keywords are as described below and the operand format depends on the particular

keyword. Letters appearing in keywords may be entered in either upper-case or lower-
case.

2.4.1 Compile-Time Expressions

Several controls allow compile-time expressions in their operands. These are expressions
which combine compile-time variables and numeric constants with the operators:

+ - % / NOT AND OR XOR < <= = <> >= >

The meaning of the operators and their precedence is the same as for other 80/PL expres-
sions (Chapter 7) and parentheses may be used to modify the precedence.

2.4,1.1 Compile-Time Variahbles

Compile-time variables have the same form as other 80/PL identifiers (Rule 91). They
contain signed, 16-bit quantities and are accessible only with compiler controls.

2.4.1.2 Compile-Time Constants

Compile-time constants have the form of a number (Rule 96) as described in Section 7.7.
They can be represented in binary, octal, decimal, or hexadecimal notation.

2.4.2 The INCLUDE CONTROL
The INCLUDE control has the form

$INCLUDE (path)

where path is a path to a file name. The file is searched for first in the directory of
the primary source file, and then in the directories given in the “-I1” (*/INCLUDES")

invocation option (Section 2.1.2, Section 2.2.2). If the file is found, it is included in the
source at this point.

The INCLUDE control must be the rightmost control on a control line. Included files
may, themselves, contain INCLUDE controls.

2.4.3 The SET Control
The SET control has the form

$SET (setspec|[,setspec]...)

where each setspec has the form

compile-time-variable[zcompile-time-expression]

Chapter 2: General Information 1.11

The variable is defined (or redefined) to have the value of the expression. Any variables
used in the expression must have been previously defined by a SET control or by the
“.D” (“/DEFINE”} invocation option (Section 2.1.2, Section 2.2.2). If the expression (and
the equal sign) are absent, a value of -1 will be assigned to the variable. The first $SET
of a variable that has been set by a “-D” (“/DEFINE”) invocation option is ignored.

2.4.4 The RESET Control
The RESET control has the form

$RESET (var[,var]...)

Each variable is defined (or redefined) to have the value of zero. The first $RESET of a
variable that has been set by a “-D” (“/DEFINE”) invocation option is ignored.
2.4.5 Conditional Compilation

Conditional compilation is performed by the controls described in this section. When
used, each of these controls must appear alone on a control line.

The general form of a conditional compilation block is

$IF expression
$ELSE IF expression
:-T;I.SI'_.SEIF expression
i

$ENDIF

The ELSEIF and ELSE portions are optional and there can be a number of ELSEIF portions.
Conditional compilation blocks may be nested.

An expression in the IF and ELSEIF controls is considered true if the low bit of its
value is one; otherwise, it is considered false.

1.12 80/PC Language Reference Guide

2.4.6 Listing Controls

The listing controls are TITLE, SUBTITLE, LIST, NOLIST and EJECT. The listing
controls are ignored unless the “-[" (“/LIST"), “-a” (“/MACHINE_CODE"), or “-x"
(*/CROSS_REFERENCE") options create a listing on the standard cutput.

The TITLE and SUBTITLE control have the form

$TITLE ('string')
$SUBTITLE ('string')

where string is a sequence of up to 60 ASCII characters.

More than one SUBTITLE is allowed. Any SUBTITLE control after the first causes a
page eject.

The LIST, NOLIST and EJECT controls have the form

$LIST
$NOLIST
$EJECT

LIST resumes listing the source. NOLIST suppresses listing of the source. EJECT causes
a page eject in the source listing.

2.4.7 Other Controls

All other controls are ignored by 80/PC so that source files intended for PL/M-80 can be
processed by 80/PC without change.

2.5 80/PL SOURCE FORMAT

An 80/PL source program is composed of a sequence of lines, each of which must be
ended by a newline character.

2.5.1 Blanks and Comments

A comment in 80/PL consists of a sequence of characters prefixed with the combination
“/*» and suffixed with the combination “*/*. The sequence of characters may not include
the combination “*/".

A comment may be used wherever a blank is permitted, except within strings.

Chapter 2: General Information 1-13

2.5.2 Statement Recognition

There are no reserved words in 80/PL. However, a statement beginning with one of the

following statement keywords is assumed to be the statement which begins with that
word:

DO IF PROCEDURE ENABLE

END ELSEIF DECLARE DISABLE

GO ELSE CALL HALT

GOTO ENDIF RETURN CAUSEINTERRUPT
UNDO

2.6 OBJECT MODULE FORMAT

The object module produced by the 80/PC compiler uses the format of the Intel MCS-
80/85 Relocatable Object Module Formats. Some versions of the compiler are optionally
able to produce Tektronix LAS format object modules.

2.6.1 The Run-Time Support Library

Object modules produced by 80/PC generally call out-of-line routines to perform word
and string operations. Calls on short routines such as word subtract may be replaced by

inline code sequences by spacifying the “-F” (“/OPTIMIZE=INLINE™) invocation option
{Section 2.1.1, Section 2.2.1).

These routines reside in the 80pl.lib library which is distributed with the 80/PC
compiler. Object modules produced by 80/PC must be linked with this library to produce
executable programs.

3. Introduction to the Meta-Language

This manual presents the complete syntax for the 80/PL language using a formal meta-
language. The syntax is permissive in that some constructs that are formally allowed by
the syntax are disallowed in practice as described in the text of this manual.

The meta-language used to describe the syntax of 80/PL is a modification of BNF. It
is described informally in this chapter and formally in Appendix C.

A grammar in the meta-language consists of a sequence of rules, each terminated by
a period.

Non-terminal symbols are composed of letters, decimal digits, and dashes. Literals
are Tepresented as quoted strings or as a sequence of upper-case letters. Within a literal,
an upper-case letter and the corresponding lower-case letter are considered equivalent.

Each rule of grammar has the general form:
v=sl]s2l...1sn

where v is a non-terminal symbol and the s’s are arbitrary strings of non-terminal symbols
and literals. The interpretation of such a rule is that v is to be replaced by one of the
alternatives s1, or s2, or ...or sn.

This form can be extended by a number of simplifying constructs:
1. A rule such as
a=b%lc*.
may be written as
a=[blc]4.
In general,

v=slitls2|s1t2s2])...1s1tns2.

(where the t's are non-null strings of non-terminal symbols and literals) may be
replaced by

v=si{t11t21..1tn} s2

1-16 80/PC Language Reference Guide

2. A rule such as
a=blbec.
may be written as
a=hl[c]
in general,
v=s51s2]|s1i1s2]...1s1tns2.
may be replaced by
v=sl[t1[|t2]...]tn]s2.
3. Arule such as
a=biab.
may be written as
a = b*,

which may be read as “a is to be replaced by one or more occurrences of b”. For
convenience, the sequence

t*]
may be replaced by
[
and the sequence
[{(t11t2]..0tn}*]
may be replaced by
[t1it21..0t]*

4, Modules and Procedures

The 80/PL unit of compilation is known as a module. It may contain declarations,

procedures, and possibly a main program. Modules, procedures, and main programs
are discussed in this chapter.

4,1 MODULE DEFINITIONS
The syntax of a module is:

1. module = identifier ‘” DO *;’ module-body ending.

2. module-body = [declare-statement | procedure-declaration]*
[executable-statement]*.

The statements from the DO statement through the ending are within a new naming
scope. This naming scope is the module level and many concepts such as initial data,
public and external data, and reentrant and interrupt procedures can only be used in
statements at the module Jevel.

The identifier is the module name and is used to name the resulting object module.

If a name appears in the ending (Rule 66) of the module, the compiler will verify that it
is the module name.

A source file may contain only one module.

4.2 MAIN PROGRAMS

If the module body contains executable statements (Rule 37) not contained within pro-
cedures (Rule 3), the module is a main program. The entry point of a main program
is the {irst executable statement in the module body. All executable statements except
the RETURN statement (Rule 60) may appear in a main program. A HALT statement
(Rule 64) implicitly follows the last statement of a main program.

4.2.1 Main Program Statement Labels
Statement labels (Rule 67) in a main program differ in three ways from statement labels
in procedures:

¢ they may be declared PUBLIC;

® they generate code to reinitialize the stack pointer; and

#® they may be the target of a GOTO statement (Rule 58) from outside the main
program.

1-18 80/PC Language Reference Guide

4.3 PROCEDURE DECLARATIONS
The syntax of a procedure declaration is:

3. procedure-declaration = identifier *:’ procedure-head
procedure-body ending.

4. procedure-body = [declare-statement | procedure-declaration]*
[executable-statemeni]*.

5. procedure-head = PROCEDURE [parameter-Iist]
[procedure-attribute]* *;’.

6. procedure-attribute = basic-type | procedure-scope |
procedure-class.

The statements from the procedure head through the ending are within a new naming
scope.

If a name appears in the ending (Rule 66) of the procedure, the compiler will verify
that the named procedure is the one being ended.

4.4 PROCEDURE PARAMETERS
The syntax of the optional procedure parameter list is:

7. parameter-list = ‘{* identifier [‘,’ identifier]*).

Procedure parameters appear in the parameter list and then in declare statements
(Rule 10) which must appear among the declare statements in the procedure body. The

declare statements for procedure parameters give a basic type (Rule 32) and no other
attributes.

4.5 PROCEDURE TYPES
Procedures are either untyped or have one of the basic types (Rule 32).

Untyped procedures are frequently referred to as subroutines. They are invoked by a
CALL statement (Rule 57). The return from an untyped procedure is a RETURN statement
without the optional expression. Such a return implicitly follows the last statement of
an untyped procedure.

Typed procedures are frequently referred to as functions. They are invoked by a
function reference (Rule 85) within an expression. The return from a typed procedure is
a RETURN statement with an expression compatible with the type of the procedure. If
the return does not have the optional expression, a warning is issued.

Unless the end of the function is preceded by a GOTO statement or a RETURN
statement, a return without an expression is generated.

4.6 PROCEDURE SCOPE
The syntax of the procedure scope attributes is:

8. procedure-scope = EXTERNAL | PUBLIC.

Procedures which are neither external nor public are internal. A single procedure defini-
tion can not have both the EXTERNAL and PUBLIC attributes.

Chapter 4: Modules and Procedures 1-19

4.6.1 Public and Internal Procedures

Procedures with the PUBLIC attribute or with no scope attribute are actual procedures
and should have at least one executable statement (Rule 37) in their procedure bodies.

4.6.2 External Procedures

Procedures with the EXTERNAL attribute are dummy procedures that declare the pro-

cedure type and parameters. The procedure bodies of external procedures may contain
only declarations for the procedure parameters.

External procedures may appear only at the module level. Like all external declara-
tions, external procedures may be redeclared as actual procedures at the module level.
No compatibility checks are made when a procedure is redeclared in this way.

4.7 PROCEDURE CLASS
The syntax of the procedure class attributes is:

9. procedure-class = REENTRANT | INTERRUPT [number].

A procedure may have both the interrupt and the reentrant attributes.

4.7.1 Reentrant Procedures

Procedures with the REENTRANT attribute have their local storage allocated on the stack.
This allows more than one activation of the reentrant procedure to execute concurrently.

Reentrant procedures must be at the module level and may not have other procedures
nested within them.

4.7.2 Interrupt Procedures

Procedures with the INTERRUPT attribute can be invoked from the processor interrupt
vector of the machine. The prologue of an interrupt procedure disables interrupts and
stores all the processor registers. The epilogue restores all the registers, enables inter-
rupts, and returns. Interrupt procedures are untyped and have no parameters.

The optional number is ignored and no interrupt vector is generated by the compiler.

5. DECLARE Statements

The syntax of the DECLARE statement is:
10. declare-statement = DECLARE declaration-list* *;'.

11, declaration-list = declaration-item [*,’ declaration-item]*.

12. declaration-item = identifier any-aitribute* 1
factored-declaration-item.

13. any-attribute = label-attribute | literally-attribute |
at-atiribute | initialization-atiribute | element-attribute.

Data items, labels, and literallys are declared by means of the DECLARE statement. All
identifiers except procedure names, labels, and the predefined array, MEMORY, must be
declared in a DECLARE statement before they are used.

5.1 FACTORED DECLARATIONS
The syntax of a factored declaration item is:

14. factored-declaration-item = ‘(’ basic-declaration [’
basic-declaration]* ‘)’ any-attribute*].

15. basic-declaration = identifier [element-attribute]*.

Factoring of declarations has two purposes -- convenience, and forcing contiguous alloca-
tion of storage. When items in the factored list are allocated storage, that storage will be
contiguous and in the order of the items in the list.

5.2 THE LABEL ATTRIBUTE
The LABEL attribute is:

16. label-attribute = LABEL.

The LABEL attribute declares an identifier to be a label. When an identifier is used
in a label definition (Rule 67) it is implicitly declared, so explicit label declaration is
not normally needed. However, the label declaration is needed to associate the PUBLIC
and EXTERNAL attributes with a label. The LABEL attribute must be factored if any
attributes are factored. The LABEL attribute is incompatible with any attributes except
PUBLIC and EXTERNAL,

1-22 80/PC Language Reference Guide

5.3 THE LITERALLY ATTRIBUTE
The syntax of the LITERALLY attribute is:

17. literal-atiribute = LITERALLY string.

An identifier declared with the LITERALLY attribute is actually a parameterless mac-
ro. Whenever the compiler encounters an identifier declared with this attribute, the as-
sociated string (Rule 94) is substituted for the identifier. Since the compiler resumes its
scan from the beginning of the substituted string, that string may also contain identifiers
declared with the LITERALLY attribute.

The LITERALLY attribute is not compatible with any other attribute.

5.4 THE AT ATTRIBUTE
The syntax of the AT attribute is:

18. at-attribute = AT ‘(' restricted-expression ‘)",

The AT attribute can only be applied to variables which are not based or external. The
restricted expression (Rule 24) cannot be the address of a procedure or label. If the
restricted expression gives the address of an external variable, then the variable with
the AT atiribute cannot be public. If the AT attribute is applied to a factored list, the
first variable is placed at the location given by the restricted expression and the other
variables follow. A variable with the AT attribute is assumed to have a new value every
time it is referenced so it will never be optimized.

5.5 THE DATA AND INITIAL ATTRIBUTES
The syntax of the DATA and INITIAL attributes is:

19. initialization-attribute = data-attribute | initial-attribute.

20. data-ottribute = DATA ‘(’ initialization-item-list *)’.

21, initial-attribute = INITIAL ‘(’ initialization-item-list *)".

22, initialization-item-list = initialization-item [*,’ initialization-item]*.
23. initialization-item = string i restricted-expression.

Initialization attributes can only be applied to variables which are not based {Rule 30) or
external. If the initialization attribute is applied to a factored list, the initialization items
are used to fill the variables in the list until they are used up.

If the initialization item is a string (Rule 94}, each element is filled with the next
bytes in the string. For instance, if the current element is a word, the next two bytes will
be used to fill the element. When the string contains too few bytes to fill the element,
those that remain will be placed leit adjusted in the element.

The DATA attribute specifies that the variable is assigned to the code segment and
cannot be changed at execution.

The INITIAL attribute specifies that the variable is assigned to the data segment and
can be changed at execution. The INITIAL attribute can only appear at the module level
(Section 4.1).

Chapter 5: DECLARE Statements 1-23

5.5.1 Restricted Expressions
A restricted expression has the syntax:

24, restricted-expression = address [[‘+' | ‘='} expression] |
expression.

Restricted expressions are used in the AT attribute, DATA attribute, and the INITIAL
attribute. The expression must have the form of a constant operand (Section 7.3). The
address (Rule 80) may be the address of a long constant (Rule 81).

5.6 ELEMENT ATTRIBUTES

The syntax of an element attribute is:

25. element-attribute = storage-class | member-attribute.
26. storage-class = public-attribute | external-attribute | based-attribute.

27. member-aitribute = dimension | structure | basic-type.

5.6.1 The EXTERNAL Attribute
The EXTERNAL attribute is:

28. external-attribute = EXTERNAL.
The EXTERNAL attribute can only be used at the module level.

The scope of externals is between that of builtin names and module level names.
This means that external names can be redefined by declarations at the module level.
A program made up of many modules can therefore have a definition file containing
external definitions for all identifiers shared between the modules. This file can be
included in all the modules, even one where there is a corresponding public definition,
without causing an error.

5.6.2 The PUBLIC Attribute
The PUBLIC attribute is:

29. public-attribute = PUBLIC.

The PUBLIC attribute makes an identifier available to other modules. The PUBLIC
attribute can be used only at the module level. An identifier that is declared EXTERNAL
or AT an external cannot have the PUBLIC attribute.

5.6.3 The BASED Attribute
The syntax of the based attribute is:

30. based-attribute = BASED [restricted-reference | "*’}.

The BASED attribute specifies that the declared item is located at the address given by
its base. No storage is allocated for based items.

The restricted reference (Rule 88) gives an implied base which must be a previously
defined word or pointer. The implied base will be used when an actual reference to the
based item does not have an explicit base (Rule 90).

1-24 80/PC Language Reference Guide

An implied base of ‘*' means that the variable must always be referenced with an
explicit base.

5.6.4 The Dimension Attribute
The syntax of the dimension attribute is;
31. dimension = ‘(" [number | '*'}).
The dimension attribute specifies that the declared item is an array and usually gives the
number of elements in the array.

A dimension of ‘*’ is legal if the identifier is external or based or if it has an unfactored
INITIAL attribute or DATA attribute. The actual dimension of an external or based array
is unimportant. If an array is initialized, the value of the '*’ is set to the the number of
items in the initialization list. If an item in the initial list is a string, the dimension will
be made large enough to hold the bytes in the string. For instance, if the string is five

bytes and the array is a word array, three words will be allocated in the array to hold the
string.

Note that the dimension attribute need not immediately [ollow the dimensioned
identifier.

5.6.5 The Basic Type Attributes
The basic types are:

32. basic-type = BYTE | WORD | ADDRESS | INTEGER |
POINTER 1 REAL.

The BYTE type specifies an unsigned number of 8 bits. This is a number from 0 to 255.

The WORD type specifies an unsigned number of 16 bits. This is a number from 0
to 65535

The ADDRESS type is exactly the same as the WORD type.

The INTEGER type specifies a signed number of 16 bits. This is a number from -
32768 to 32767.

The POINTER type specifies an address of 16 bits. For compatibility with machines
with addresses greater than 16 bits, the POINTER type is not the same as the WORD type.

The REAL type is recognized but not supported.
5.6,6 The STRUCTURE Attribute
The syntax of the STRUCTURE attribute is:
33. structure = STRUCTURE ‘{’ member-list ‘).

34, member-list = member [',’ member]*,

35. member = member-identifier member-atiribute* |
‘(' member-identifier [',’ member-identifier]*)’
member-attribute*,

36. member-identifier = identifier | **’,

If the member identifier is a *#’, an unnamed space is left in the structure. The size of
this space is determined by the member attributes (Rule 27).

6. Executable Statements

The syntax of an executable statement is:

37. executable-statement = do-group | if-statement | if-block |
simple-statement.

6.1 DO GROUPS
The syntax of a DO group Is:

38. do-group = group-head-statement [declaration]*
[undo-statement | executable statemeni]* ending.

39. group-head-statement = [label-definition] { do-statement |
while-statement | iterative-do-statement |
case-statement) .
The statements from the group head through the ending are within a new naming scope.

Any group may be prefixed with a label which gives the group name to be referred to
in an UNDO statement or an END statement. If the label definition {Rule 67) preceding
a group contains multiple labels, the last one is the group name.

_ If the group name is used in an END statement, the compiler will verify that the
named group is, in fact, the one being closed.

6.1.1 The DO Statement
The syntax of the DO statement is:
40. do-statement = DO '}’
The DO statement initiates a group but serves no other purpose,
6.1.2 The WHILE Statement
The syntax of the WHILE statement is:
41. while-statement = DO WHILE conditional-expression *;'.

The WHILE statement initiates a group. The statements within the group are executed
repeatedly while the conditional expression (Rule 68) remains true. The test takes place
before each execution of the statements within the group.

1-26 80/PC Language Reference Guide

6.1.3 The Iterative DO Statement

The syntax of the iterative DO statement is:

42. iterative-do-statement = DO restricted-reference ‘="' expression-1
TO expression-2 [BY expression-3] *;.

This statement initiates a group that is an iterative loop. The restricted reference (Rule 88)
is the loop index. The expressions (Rule 69) must have a type compatible with the type

of the loop index. If the optional BY clause is absent, expression-3 is assumed to be the
constant 1.

The loop index may be either integer or unsigned (byte or word). Integer and unsigned
iterative loops operate in a significantly different manner. For both types of iterative
loops, the start, expression-1, is first evaluated and assigned to the loop index.

For an unsigned iterative loop, the limit, expression-2, is evaluated before each
iteration of the loop. If the loop index exceeds the limit, the loop is terminated. The step
expression is evaluated after each iteration of the Ioop and is added to the loop index. If
there is an overflow, the loop is terminated.

For an integer iterative loop, both the limit and the step expressions are evaluated
before each iteration of the loop. If the step is positive the loop is terminated if the loop
index is greater than the limit. If the step is negative the loop is terminated if the loop
index is less than the limit. After each iteration of the loop the step which was evaluated
at the beginning of the loop is added to the loop index.

6.1.4 The CASE Statement
The syntax of the CASE statement is:

43. case-statement = DO CASE expression ‘;’.

In operation, consider that each statement in the body of the group is numbered sequen-
tially from zero. The expression is evaluated and the correspondingly numbered state-
ment is executed. Control is then transferred to the statement following the end of the
group.

If the value of the expression is negative or greater than the number of statements in
the body of the group minus one, the results are unpredictable.

6.1.5 The UNDO Statement
The syntax of the UNDO statement is:
44, undo-statement = [label-definition] UNDOQ [identifier] ';".

If the identifier is absent, control passes out of the immediately containing DO group.
If the identifier is present, control passes out of the containing DO group with the
corresponding name.

Chapter 6: Executable Statements 1-27

6.2 THE IF STATEMENT
The syntax of the IF statement is:

45. if-statement = if-clause executable-statement | if-clause
balanced-statement ELSE executable-statement.

46. if-clause = [label-definition] IF conditional-expression THEN.

47. balanced-statement = if-clause balanced-statement ELSE
balanced-statement | { if-block | do-group | simple-statement}.

Note that the IF statement itself is not ended by a semicolon. If the conditional expression
(Rule 68) is true, the executable statement following the THEN is executed and, if there is
an ELSE, the executable statement following the ELSE is not executed. If the conditional
expression is false, the executable statement following the THEN is skipped and, if there
is an ELSE, the executable statement following the ELSE is executed.

6.3 IF BLOCKS
The syntax of an IF block is:

48. if-block = block-if-statement {executable-statement]* [block-elseif]*
[block-else} endif-statement.

49. block-elseif = elseif-statement [executable-statement]*.

50. block-else = else-statement [executable-statement]*.

The IF block provides the same capability as the IF statement but does so with separate
statements as the block delimiters. This use of statements as the block delimiters is like
the use of the DO and END statements as group delimiters. However, an IF block does

not create a new naming scope.
6.3.1 Block If Statement
The syntax of the block IF statement is:

51. block-if-statement = [label-definition] IF conditional-expression ;.

The block IF statement introduces an IF block. Note that this statement has a semicolon
in the place that an IF statement would have a THEN.

I the conditional expression (Rule 68) is false, control passes to the following block
delimiter for this IF block. The following black delimiter may be an ELSEIF statement,
an ELSE statement, or an ENDIF statement.

1f the conditional expression is true, control falls through to the following statements

which are executed up to the following block delimiter. Control then passes to the ENDIF
statement for this IF block.

1-28 80/PC Language Reference Guide

6.3.2 The ELSEIF Statement
The syntax of the ELSEIF statement is:

52. elseif = [label-definition] ELSEIF conditional-expression ;.
Note that an ELSEIF statement is only legal within an IF block.

If the conditional expression is false, control passes to the following block delimiter
for this IF block. The following block delimiter may be an ELSEIF statement, an ELSE
statement, or an ENDIF statement,

, If the conditional expression is true, control falls through to the following statements
which are executed up to the following block delimiter. Control then passes to the ENDIF

statement for this IF block.

6.3.3 The ELSE Statement

The syntax for the ELSE statement is:

53. else-statement = [label-definition] ELSE ‘;.

Note that an ELSE statement is only legal within an IF block and is not the same thing
as the ELSE keyword in the IF statement.

If control reaches the ELSE statement the following statements are executed up to the

ENDIF statement for this IF block. Control then passes to the ENDIF statement for this
IF block.

6.3.4 The ENDIF Statement
The syntax of the ENDIF statement is:

54. endif statement = [label-definition] ENDIF ;.

Note that an ENDIF statement is only legal within an IF block. Control passes from the
ENDIF statement to the statements Iollowing the IF block.

6.4 SIMPLE STATEMENTS

The syntax of simple statements is:

55. simple-statement = assignment-statement | call-statement }
goto-statement | null-statement |
return-statement | special-statement.

6.4.1 The Assignment Statement
The syntax of the assignment statement is:

56. assignment-statement = [label-definition] target-reference
[',' target-reference]* ‘=’ expression *;'.

The right side expression (Rule 69) is assigned to all the target references. The types of the
target references must be compatible with each other and with the right side expression.

Chapter 6: Executable Statements 1-29

6.4.2 The CALL Statement
The syntax of the CALL statement is:
57. call-statement = [label-definition] CALL { identifier |

restricted-reference} ['(* expression-list ‘)] ‘",

If the identifier form is used, the call is a direct call. The identifier must be the name
of an untyped procedure (Section 4.5). If the restricted reference form is used, the call
is an indirect call and the restricted reference must contain the address of an untyped
procedure. The restricted reference (Rule 88) must be to a word or pointer variable.

The expression list supplies arguments to the procedure. All arguments are passed
by value. If the call is direct, the argument expressions must match the parameters of the
procedure declaration in number and the expression types must be compatible. If the
call is indirect, the arguments are assumed to match, in number and type, the parameters

of the called procedure.
6.4.3 The GOTO Statement
The syntax of the GOTO statement is:

58. goto-statement = [label-definition] { GOTQ § GO TO} identifier ;"

The GOTO statement performs an unconditional transfer to a label. The identifier must
be a label in the procedure containing the GOTO statement or a label in a main program
{Section 4.2). The identifier must also be in the same or an enclosing naming scope.

A transfer to a label in a main program resets the stack pointer.

6.4.4 The Null Statement

The syntax of the null statement is:
59. null-statement = [label-definition] *;".

The null statement performs no operation whatsoever. However, it is counted as a
statement and, thus, may be found useful in DO CASE groups (Rule 43) and after the
THEN or ELSE keywords in IF statements (Rule 45).

6.4.5 The RETURN Statement
The syntax of the RETURN statement is:

60. return-statement = [label-definition] RETURN [expression] *;.

The form of the RETURN statement with the optional expression (Rule 69) is used to
return from a typed procedure. A typed procedure should logically end with such a
return. The expression must be compatible with the type of the procedure.

The form without the expression is used to return from an untyped procedure. An

untyped procedure implicitly ends with such a return, but may contain other such
refurns.

1-30 80/PC Language Reference Guide

6.4.6 Special Statements

The syntax of the special statements is:

61. special-statement = disable-statement | enable-statement |
halt-statement | cause-interrupt-statement.

62. disable-statement = [label-definition] DISABLE ;.

63. enable-statement = [label-definition] ENABLE ',

The DISABLE statement and the ENABLE statement generate the equivalent machine
instructions.

64. halt-statement = [label-definition] HALT ;.
The HALT statement generates an ENABLE and then a HALT instruction.
65. cause-interrupt-statement = [label-definition] CAUSE$INTERRUPT ‘(' expres-
sion " 7.

The CAUSESINTERRUPT statement generates the appropriate RESET instruction. The
expression must be a constant operand (Section 7.3) from zero to seven {0-7).

6.5 ENDINGS
The syntax of an ending is:
66. ending = [label-definition] END [identifier] ;.

Endings are used to close modules, procedures, and DO groups. If the identifier appears
in the ending, it will be used to verify that the named module, procedure or group is the

one being closed.
6.6 LABEL DEFINITIONS

The syntax of label definitions is:
67. label-definition = identifier ‘:’*.
Only executable statements may have statement labels.

6.7 COMPATIBLE TYPES

In assignment statements (Rule 56) and other similar situations, the right side must have a
type that can be converted into the type of the left side. Bytes and words are compatible:
bytes are converted to words by extending them with zeros; words are converted to bytes
by truncation. Words and pointers are compatible and are the same size. Integers are
only compatible with integers. When the right side is a constant, the context of the
constant operand is integer.

Chapter 6: Executable Statements 1-31

6.8 CONDITIONAL EXPRESSION
The syntax of a conditional expression is:

68. conditional-expression = expression.

Even though a conditional expression has the same syntax as an expression, it may not
be evaluated in the same way.

The expression is treated as if it were made up of simpler expressions connected by
the AND, OR and NOT operators. The simpler expressions are evaluated only until the
truth of the expression is determined.

The statements which use conditional expressions check only the least significant
bit of an expression for true (1) or false (0).

7. [Expressions

The syntax of an expression is:

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

expression = basic-expression | embedded-assignment.
basic-expression = logical-factor [{ ORI XOR} logical-factor]*.
logicai-factor = logical-secondary [AND logical-secondary].

logical-secondary = [NOT]* logical-primary.

logical-primary = sum [relop sum].
reIOp = et I fem ! I L] l et I ot I et
sum = term [{‘+' | ‘-’ | PLUS | MINUS} term]*.

term = secondary [[‘*' 1 /' | MOD} secondary]*.
secondary = [‘4'|*-']* primary.

primary = constant | address | reference | ‘(’ expression ‘).

Note that by the rule for logical primary, a sequence such as X < Y < Z is not legal since
the “relop sum” sequence cannot be repeated.

1-34 B80/PC Language Reference Guide

7.1 OPERATORS

The table below gives the operators recognized in expressions. The table is ordered from
the highest operator precedence to the lowest with groups of operators with the same
precedence on consecutive lines. The highest precedence operators are those executed
first. The columns labelled “b w i p” shows which operands are legal for each operator,
and gives the type of the result. A “~” means that operands of that type are not legal.

op b wi p name
b wi - unary plus
b wi ~ unary minus (negation)
* w w i — multiplication
/ w w i - division
MOD w w i — remainder
+ b w i - addition
- b w i - subtraction
PLUS b w - - add with carry
MINUS b w - - subtract with carry
< b b b b less than
<= b b bb less than or equal to
= b b b b equal to
<> b b b b not equal to
>= b b b b greater than or equal to
> b b bob greater than
NOT b w - - bitwise NOT (one’s complement)
AND P w - - bitwise AND
OR b w - - bitwise OR
XOR b w — - bitwise exclusive OR

The operand type for binary operators is determined by combining the types of the two
operands as shown by the next table. As before, a “~"” means that the combination is not
legal.

b wi p
byte P w - -
word w W - -
integer - - i -
pointer - — —=p

7.2 RELATIONAL OPERATORS
The relational operators

< K= = £ >= >

compare bytes, words, integers, and pointers. The result of the relational operation is a
byte with the value irue (0FFh) or false (0).

Chapter 7: Expressions 1-35

7.3 CONSTANT OPERANDS
A constant operand is

® a constant;
¢ the builtin functions SIZE, LENGTH, or LAST; or
® an operation with constant operands.

The type of a constant operand depends on its context.

If a constant operand is used in a place where only an integer would be legal, the
value of the constant operand is treated as if it were an integer. When the integer operand
is a number, its value must be 0 to 32767. If the integer operand is really an operation

between constant operands, then the operation becomes an integer operation and the
context of its operands is integer.

7.4 EMBEDDED ASSIGNMENTS
The syntax of an embedded assignment is:
79. embedded-assignment = reference ‘:=' basic-expression.

The type of an embedded assignment is the type of the basic expression. The type of the
reference must be compatible (Section 6.7} with the type of the basic expression.

7.5 ADDRESSES
The syntax of an address is:
80. address = {‘@|‘’] {inexact-reference | long-constant}.
81. long-constant = ‘{’ expression [, expression]* ‘).
A long constant acts like a DATA initialization {Rule 20) of a byte array.

7.6 REFERENCES
The syntax of a reference is:

“82. reference = basic-reference | explicit-based-reference |
function-reference.

83. baosic-reference = elementary-reference [*.’ elementary-reference]*.

84. elemenlary-reference = identifier [(" expression)'].

7.6.1 Function Reference
The syntax of a function reference is almost like the syntax of an elementary reference.

85. function-reference = identifier ['(’ expression-list ‘)'].
86. expression-list = expression [',’ expression]*.

The identifier is the name of a typed procedure and the expressions in the expression
list are the arguments. The arguments must be compatible with the formal parameters of
the function.

1-36 80/PC Language Reference Guide

7.6.2 Assignment Target Reference
The syntax of a target reference is:

87. target-reference = reference.

If the target reference is a function reference (Rule 85), the function can only be one of
the builtin pseudo-functions:

OUTPUT STACKPTR LOW HIGH

See Chapter 8 for further information.

7.6.3 Restricted Reference
The syntax of a restricted reference is:

88. restricted-reference = identifier [’ identifier]*.
Restricted references appear in the BASED attribute, the iterative DO statement and the
indirect CALL statement.
7.6.4 Inexact Reference
The syntax of an inexact reference is just like the syntax of a basic reference:
89. inexact-reference = basic-reference.

An inexact reference can be a reference to an array or to a structure as well as to a :
simple variable. An inexact reference to a member of an array of structures need not)
have an index for the structure. If the index is missing, it is assumed to be zero. Inexact

references appear in addresses (Rule 80) and in the SIZE, LENGTH, and LAST builtin
functions {Chapter 8).

7.6.5 Explicitly Based Reference
The syntax of an explicitly based reference is:
90. explicit-based-reference = [basic-reference |
‘(" expression ‘)’] (‘->’ basic-reference] *.
Each basic reference following the arrow must be to a variable with the BASED attribute
(Rule 30). If the based item was declared with an implicit base, that base is ignored.

The base expression can be an absolute number. A variable based on an absolute is
like a variable AT an absclute (Rule 18). However, it is optimized like any other based
reference.

7.6.6 Identifiers
An identifier is:

91. identifier = letter [letter | decimal-digit | .’ | ‘$}*.

92. letter = AIBICIDJESFIGIHIIIJIKILIMIN|OI
PIQIRISITIUIVIWIXIYI|Z

An identifier may consist of a maximum of 31 characters. Dollar signs (“$”), which may
be used freely for readability, are not saved as part of the identifier and do not count)
toward the maximum.

Chapter 7: Expressions 1-37

An upper-case letter and its lower-case form are considered equivalent.

7.7 CONSTANTS
A constant is;

93.
94.
95.

g6.

97.
98.
99.
100.
101.
102.
103.

104.

consfant = string | number.
siring = ‘' string-character*™ *'".
string-character = ‘' '’ | printing-character-other-than-apostrophe.

number = binary-number | octal-number | decimal-number |
hex-number.

binary-number = binary-digit [binary-digit|'$’]* B.
binary-digit = 01 1.

octal-number = octal-digit [octal-digit]'$’]* {01Q}.
octal-digit = binary-digit121314151617.
decimal-number = decimal-digit [decimal-digit|*$’]* [D].
decimal-digit = octal-digit18189.

hex-number = decimal-digit [hex-digitl‘$’] H.

hex-digit = decimal-digit | AI1BICIDIE1F.

Dollar signs (“$") may be freely used between digits in numbers for readability.

8. Builtin Identifiers and Functions

The compiler recognizes builtin identifiers that are equivalent to typed procedures, un-
typed procedures and pseudo-functions. Pseudo-functions are like untyped procedures
but appear on the left of assignment statements. The compiler also recognized the builtin
array variable MEMORY.

In the following description, the builtin identifiers are given as they would appear
in the context of simple assignment or call statements:

& Untyped procedures appear in call statements.

Typed procedures appear on the right of an assignment and the left indicates the
result expected from the procedure.

® Pseudo-functions appear on the left of an assignment statement and the right
gives the type of the values that can be assigned to them.

Most builtin procedures and pseudo-fnctions have arguments. Arguments can generally
be expressions. The few exceptions are constants or references. Where arguments are
described as byte or word, either byte or word expressions may be used since a word
can always be truncated to a byte and a byte can be extended with zeros to be a word.

8.1 SIZE OF VARIABLES

LENGTH, LAST and SIZE are functions that yield constants. The constants are like
~numbers in that values from 0 - 255 have type byte and values from 256 - 65535 have
type word. Their argument has the syntax of an inexact reference (Rule 89).

con = SIZE (ref)
con = LENGTH (ref)
con = LAST (ref)

The SIZE function gives the size in bytes of the referenced item.

The LENGTH function gives the number of elements in the referenced item. If it is
not an array then the length is one,

The LAST function gives the index of the last element in the referenced item. If it is
not an array then the index is zero.

1-40 B80/PC Language Reference Guide

8.2 TYPE CONVERSION
The INT, SIGNED, DOUBLE, and UNSIGN functions change the type of their argument.

integer = INT (word)
integer = SIGNED (word)
word DOUBLE (byte)

word = UNSIGN (integer)

8.3 DECIMAL ADJUSTMENT

. The DEC function performs a decimal adjust on its argument,.

byte = DEC (byte)

8.4 ABSOLUTE VALUE

The IABS function returns the absolute value of its argument.

integer = IABS (integer)

8.5 SHIFT AND ROTATE

The bits argument and count argument may be either bytes or words. The result type
will be of the same type as the first argumnent.

bits = SHL (bits, count)
bits = SHR (bits, count)
bits = ROL (bits, count)
bits = ROR (bits, count}
bits = SCL (bits, count)
bits = SCR (bits, count)
integer = SAL (integer, count)
integer = SAR (integer, count)

SHL and SHR shift bytes or words. Bits shifted out go into the carry. Zeroes are shifted
in.

ROL and ROR rotate bytes or words. Bits rotated out go into both the other end of
the byte or word and into the carry.

SCL and SCR also rotate bytes or words but they include the carry in the bits rotated.
The bits shifted out of the byte or word go into the carry and the bits shifted out of the
carry go into the other end of the byte or word.

SAR shifts an integer to the right. Bits shifted out go into the carry. Bits shifted in
are the same as the sign bit.

SAL shifts an integer to the left. It operates just like SHL.

Chapter 8; Builtin Identifiers and Functions 1-41

8.6 REFERENCING SUBFIELDS

HIGH and LOW reference the two bytes of a word, HIGH and LOW can be used as a
normal functions or as pseudo-functions. When HIGH or LOW is used as a pseudo-
function, its argument must be a reference to a word variable.

byte HIGH (word)
byte LOW (word)
HIGH (ref) = byte
LOW (ref) = byte

HIGH used as a function returns the high byte of its argument. LOW used as a function
returns the low byte of its argument.

HIGH used as a pseudo-function assigns the byte value of the right side expression
to the high byte of the referenced word and leaves the low byte unchanged.

LOW used as a pseudo-function assigns the byte value of the right side expression
to the low byte of the referenced word and leaves the high byte unchanged.

8.7 THE STACK POINTER

STACKPTR references the hardware stack pointer register. STACKPTR can be used as a
normal function or as a pseudo-function.

word = STACKPTR
STACKPTR = word
STACKPTR used as a function returns the current value of the stack pointer register.

STACKPTR used as a pseudo-function assigns the word value of the right side ex-
pression to the stack pointer register.

8.8 TIME DELAYS
The TIME procedure causes a time delay proportional to the value of its argument.

call TIME (word)

8.9 STRING OPERATIONS

String operations operate on bytes or words as indicated by their names. They all have
a length argument which gives the maximum number of items to process.

The length argument can be a byte or word. The addresses of the bytes or words to
process are given by the source and destination arguments. The source and destination
can be pointers or words.

8.9.1 String Move

The string move procedures move bytes or words from their source to their destination.
The reverse forms of the string move procedures start at the last item in their source and
destination instead of the first.

call MOVB (source,destination, length)
call MOVW (source,destination, length)
call MOVRB (source,destination, length)
call MOVRW (source,destination, length)

1-42 80/PC Language Reference Guide

The MOVE procedure moves bytes. It operates just like MOVB but its arguments are in
a different order.
call MOVE (length, source,destination)
#

8.9.2 String Set

The string set procedures move the value of their first argument into every item in their
destination string.

call SETB (byte,destination, length)
call SETW (word, destination, length)

8.9.3 String Translation

The XLAT procedure iranslates the bytes in the source string and places them in the
destination string. The table argument gives the address of a byte array of up to 256

bytes. The translation is performed using each byte in the source string as an index to a
byte in the table.

call XLAT (source,destination, length, table)

8.9.4 String Find and Skip

The second argument of the find and skip functions is a byte or word which is compared
to the items of the source string,

The find functions compare each item unti! an equivalent one is found then they
return the index of that item.

The skip functions compare each item until a different one is found then they return
the index of that item.

The reverse find and skip functions search starting with the last item in the string.

If the entire string is checked without satisfying the condition, an index of OFFFFh
is returned.

word FINDB (source,byte, length)
word = FINDW (source,word, length)
word = FINDRB (source, byte, length)

word = FINDRW (source,word, length)
word = SKIPB (source,byte, length)
word = SKIPW (source,word, length)
word = SKIPRE (source,byte, length)
word = SKIPRW (source,word, length)

8.9.5 String Compare
The left and right arguments are pointers or words.

Items from the left string are compared to items from the right string until they are
not equal; then the index of the unequal items is returned. If the left and right strings
are the same, then an index of OFFFFh is returned.

word = CMPB (left,right, length)
word = CMPW (left,right, length)

Chapter 8: Builtin Identifiers and Functions 1-43

8.10 FLAG VALUES
The flag functions return the values of the machine flags.

byte = CARRY
byte = ZERO
byte = SIGN
byte = PARITY

8.11 INPUT AND QUTPUT

The argument to INPUT and OUTPUT is a byte constant specifying one of the hardware
ports. INPUT is a byte function which reads a byte from one of the hardware ports.
OUTPUT is a pseudo-function that may only appear on the left of an assignment. QUT-
PUT writes the byte value of the right side expression to one of the hardware ports.

byte = INPUT (con)
QUTPUT (con) = byte

8.12 THE MEMORY ARRAY

MEMORY is an external byte array of unknown size. It can be used like any other array
variable except that it cannot be the argument to SIZE, LENGTH, and LAST.

8.13 OTHER BUILTIN IDENTIFIERS
For compatibility, the following identifiers are recognized but treated as errors.

LOCKSET INWORD OUTWORD FIX FLOAT ABS OFFSET$OF
SELECTOR$OF BUILD$PTR STACKBASE

A. 80/PL and PL/M-80 Differences

80/PL is approximately a superset of both PL/M-80 and PL/M-86. Since 80/PL is intended
for the 8080 programmer, the extensions to PL/M-80 which are part of PL/M-86 will

be described first. Then the extensions which go beyond both PL/M languages will be
described.

A1 EXTENSIONS COMPATIBLE WITH PLM-86

Most of PL/M-86 is supported by 80/PL. The most notable exceptions are in the area of
interrupts and 8086 hardware support such as STACKBASE. These are not supported

because they do not fit with the 8080 architecture.
A.1.1 New Data Types

80/PL supports WORD, INTEGER, and POINTER data types of PL/M-86 in addition to the
BYTE and ADDRESS data types of PL/M-80. The POINTER data type is treated as it is
in the SMALL model of computation of PL/M-86. Pointers, therefore, are in practice just
like addresses.

80/PL recognizes the REAL data type of PL/M-86 but does not implement it. Error
messages are given for REAL declarations and for real constants.
A.1.2 New Builtin Pracedures
The following builtin procedures support the INTEGER data type.

INT UNSIGN SAL
SIGNED IABS SAR

The following builtin procedures perform character string aperations. The support
routine for the XLAT builtin is not reentrant.

MOVB SETB FINDB SKIPB
MOVW SETW FINDRB SKIPRB
MOVRB CMPB FINDW SKIPW
MOVRW CMPW FINDRW SKIPRW

XLAT

1-46 80/PC Language Reference Guide

A.1.3 The ‘@ Operator
The ‘@’ operator, like the ‘.’ operator, yields a location. For the ‘@ operator this location
has the POINTER data type.

A.1.4 The CAUSESINTERRUPT Statement

The CAUSE$INTERRUPT statement has the form:
CAUSE$ INTERRUPT (number) ;

It emits the Restart instruction for the 8080. Number must be in the range 0 to 7 for the

8080.

A.2 EXTENSIONS BEYOND BOTH PL/M-80 AND PL/M-86
80/PL extends PL/M by relaxing restrictions and by adding new features.

A.2.1 Reserved Words

80/PL has no reserved words, not even EQF. A statement which begins with one of the
following words:

DO IF PROCEDURE ENABLE

END ELSEIF DECLARE DISABLE

GO ELSE CALL HALT

GOTO ENDIF RETURN CAUSEINTERRUPT
UNDO

is assumed to be the statement which begins with that word. All other statements
are assignment statements.

A.2.2 Declare Statement

Attributes, the array specifier, the based specifier, and the type specifier can be in any
order. All attributes except LABEL, LITERALLY, AT, INITIAL, and DATA may appear
within a factored list.

The number in the array specifier can be replaced by a **’ if the array is based or
external. The star signifies an unknown dimension for the array.

The variable in the based specifier can be replaced by a ‘*’. The star signifies a based
declaration with no implicit base defined.

One consequence of the new rules for the order of attributes is that the declaration
of a based array can be written as:

DECLARE x (*) BASED y BYTE;
instead of
DECLARE x BASED y (10) BYTE;

which looked like x was based on the 10’th element of y.

A member of a structure can have the STRUCTURE data type. The name of a structure
member can be “*'. Such a member occupies space but cannot be referenced.

Externals have their own scope between the scope of builtin procedures and the
module scope. This means that a variable can be declared first EXTERNAL and then

Appendix A: 80/PL and PL/M-80 Differences 1-47

redeclared PUBLIC without generating an error. For example, a module which contains:
DECLARE xxx BYTE EXTERNAL ; /* from an include file */
followed later by:
DECLARE xxx BYTE PUBLIC ,;

will not generate an error in 80/FL but will in PL/M-80. It is therefore possible in 80/PL
but not in PL/M-80 to include, in every module of a program, a single file which contains
all the external declarations for the program.

A.2.3 The Interrupt Attribute

The interrupt number in the interrupt attribute is optional. H it is given, the number is
ignored and no entry is made in the interrupt vector.

A.2.4 Restricted Expressions

A restricted expression (Rule 24) is an expression formed from constant expressions and
constant location references.

A constant expression may contain any operators except PLUS and MINUS. The
operands in a constant expression must be constants, constant expressions or builtin
functions which are constant. The SIZE, LENGTH and LAST builtin functions are always
constant. The HIGH, LOW, DOUBLE, INT, and UNSIGN builtin functions with constant
arguments are also constants.

A location reference may be formed with the ‘.’ operator or the ‘@ operator. The
location reference may be to a variable or a long constant.

A.2.5 Explicitly Based Variables

An explicit base may be specified in a variable reference. An explicitly based variable
can have the form:

reference -> based-reference
or for more flexibility:
(expression) -> based reference

Since in the first example the reference part can itself be explicitly based, a reference of
the form:

reference -> based-reference -> based-reference

is legal and has the effect of following a chain through memory.

A.2.6 Builtin Functions as Assignment Targets

The builtin functions HIGH and LOW may be used as assignment targets. A statement
of the form:

HIGH (word-reference) = expression ;

assigns the byte value of expression to the high byte of the word reference. Likewise, a
statement of the form:

LOW (reference) = expression ;

1-48 80/PC Language Reference Guide

assigns the byte value of expression to the low or only byte of reference.

A.2.7 The IF Block
A series of statements of the form:

IF expression ;
one or more statements
ELSEIF expression ;

one or more statements
ELSE ;

one or more statements
ENDIF ;

is equivalent to:

IF expression THEN

DO ;
one or more statements
END ;
ELSE
IF expression THEN
Do ;
one or more statements
END ;
ELSE
DO ;
one or more statements
END ;

Note that in the IF block, ELSEIF, ELSE, and ENDIF are separate statements and not part
of the syntax of the IF statement.
A.2.8 The UNDO statement

The UNDO statement jumps to the statement which immediately follows a DO block.

If UNDO is used with no argument, the immediately containing DO block is the one
jumped out of. If there is an argument as in:

UNDQO XXXXX ;

then the DO block is the containing one with the name given by the argument.

A.3 UNSUPPORTED PL/M-80 AND PL/M-86 FEATURES

PL/M-80 can generate an absolute object file with no external references. This feature is

not supported. Neither is the calculation of the stack size nor the attachment of interrupt
procedures to the interrupt vector.

The features of PL/M-86 not supported are those that need the capabilities of the
8086. They are:

® The STACKBASE function.

o Word or variable unit numbers for the INPUT and QUTPUT functions.
® The INWORD and QUTWORD functions.

Appendix A: 86/PL and PL/M-80 Differences 1-49

The LOCKSET function.

The REAL data type and the FIX, FLOAT and ABS functions.
The SET$INTERRUPT and INTERRUPTSPTR functions.

The SELECTOR$OF, OFFSET$0OF, and BUILD$PTR functions.

B. Error Messages

The 80/PC compiler will detect a number of error situations and issue appropriate error

messages. The various types of error messages and their associated return codes or
completion status codes are described in this Appendix.

B.1 WARNINGS

Warnings are generated by 80/PC when a potential error has been encountered, even
though an unambiguous and probably correct choice of actions is made. Under UNIX or
PC-DOS, a code of one is returned. Under VMS, a warning completion status is returned.

B.2 ERRORS

Errors are generated by 80/PC when a statement contains one or more errors that are
serious enough that the compiler cannaot continue processing the statement. Under UNIX
or PC-DOS, a code of two is returned. Under VMS, an error completion status is returned.

B.3 SEVERE ERRORS

These errors are the most severe errors that the user should encounter in normal
operation. Severe errors are errors that the compiler cannot recover from, and they cause
immediate termination of the current compilation. These errors fall into two general
classes. They may be caused by some dynamic or static space overflow within the com-
piler, and the solution is to reduce the size and/or complexity of the program. Or, they
may indicate some problem with the environment within which 80/PC runs. I/O errors
generally fall into this category. Under UNIX or PC-DOS, a code of three is returned.
Under VMS, a fatal completion status is returned.

B.4 FATAL ERRORS

Fatal errors indicate an internal 80/PC failure. They should never be encountered by the

user. Under UNIX or PC-DOS, a code of four is returned. Under VMS, a fatal completion
status is returned.

B.5 LIST OF ERROR MESSAGES

Error messages which may be issued by the compiler are shown below. The initial letter
indicates the severity of the error.

F ARG COUNT REQUEST
E ARGUMENTS NEEDED

1-52 80/PC Language Reference Guide

ARRAY ATTRIBUTE IS INCOMPATIBLE

AT ATTRIBUTE IS INCOMPATIBLE

AT LEAST ONE CASE REQUIRED

AT LEAST ONE GLOBAL NAME WAS TRUNCATED
ATTRIBUTE CANNOT BE USED WITHIN A PROCEDURE
BAD BUS FILE (FIX TO ABS)

BAD MODE IN WIDTH

BASE VARIABLE IS UNDECLARED

BASED ATTRIBUTE IS INCOMPATIBLE

BUILTIN IS NOT ADDRESSABLE

BYTE CONSTANT QVERFLOW

BYTE OR WORD REQUIRED

BYTE WORD OR INTEGER REQUIRED

CALL STACK OVERFLOW; EXPRESSION TOO COMPLEX
CALLED VFREE WITH ALL PAGES LOCKED

CANNOT BE NESTED WITHIN EXTERNAL

CANNOT BE NESTED WITHIN EXTERNAL PROCEDURE
CANNOT BE NESTED WITHIN REENTRANT OR INTERRUPT
CAN'T FIND /USR/BIN/SORT OR /BIN/SORT

CAN'T FORK SORT

COMPILER CONTROL SYNTAX

CONSTANT OVERFLOW

CONSTANT REQUIRED

CONTROL IS OUT OF PLACE

CONTROL STACK UNDERFLOW

COULDN'T CREATE DICT FILE

COULDN'T OPEN DICT FILE

CURRNT HAS UNKNOWN LOCATION

DANGLING NODE

DATA ATTRIBUTE IS INCOMPATIBLE

DICT OPEN ERROR

DICT OVERFLOW

DICT WRITE ERROR

o th om o W ok Mo oW Mot E MM om oMMl »EMmEEEEEE e EEmE

mmmmmmmmmmEwmmmmmmmmmmmmmmmmmmmmm

Appendix B: Error Messages

DIGIT NOT APPROPRIATE TO NUMBER BASE
DIMENSION OF ZERO IS NOT ALLOWED
DO EXPECTED

DUPLICATE DECLARATION

DUPLICATE EXTERNAL DECLARATION
DUPLICATE LABEL DEFINITION
DUPLICATE MEMBER DECLARATION
DUPLICATE PARAMETER NAME
DUPLICATE PROCEDURE NAME
DYNAMIC MEMORY OVERFLOW
ELEMENT REFERENCE REQUIRED
ELSEIF FOLLOWING ELSE

END DOES NOT MATCH ACTIVE BLOCK
END OF ELEMENT EXPECTED

END OF FILE EXPECTED

END OF LINE EXPECTED

END OF STATEMENT EXPECTED

ENDIF EXPECTED

EOF BEFORE END OF MODULE

EOF IN QUOTED STRING

EQUAL EXPECTED

ERROR WRITING 0 PAGE

EXCESSIVE INTEGER VALUE

EXPLICIT ARRAY DIMENSION REQUIRED
EXPRESSION SYNTAX

EXTERNAL ATTRIBUTE IS INCOMPATIBLE
GOTO TARGET NOT DEFINED

GOTO TARGET NOT REACHABLE

/0O ERROR ON CLOSE

YO ERROR ON READ

VO ERROR ON SEEK

/O ERROR ON WRITE

IDENTIFIER EXPECTED

1-53

1-54 80/PC Language Reference Guide

tu'ﬁmmmmmmmmmmmmmmmmmmmmmmmmmmmwmmm

IDENTIFIER TOO LONG, TRUNCATED

ILLEGAL CHARACTER

ILLEGAL CHARACTER IN QUOTED STRING
ILLEGAL OPERATOR IN PERFORM CONSTANT OPERATION
IMPOSSIBLE STATE TABLE ACTION!
INCOMPATIBLE OPERAND MODE

INIT STACK OVERFLOW

INITIAL ATTRIBUTE IS INCOMPATIBLE
INITIAL VALUE DOES NOT MATCH DATA TYPE
INTEGER CONSTANT OVERFLOW

INTEGER REQUIRED

INTERRUPT ATTRIBUTE IS INCOMPATIBLE
INTERRUPT PROCEDURE CANNOT BE TYPED
INTERRUPT PROCEDURE CANNOT HAVE PARAMETERS
INVALID ASSIGNMENT TARGET

INVALID BASE SPECIFIER FOR CONSTANT
INVALID COMPILER CONTROL LINE

INVALID COMPILER CONTROL LINE (FILENAME EXPECTED)
INVALID CONSTANT - STRING TOO LONG
INVALID DIGIT IN NUMBER

INVALID EMBEDDED ASSIGN

INVALID INDEX MODE

INVALID INDEX VARIABLE

INVALID INDIRECT CALL

INVALID INTEGER OPERAND

INVALID NUMERIC CONSTANT

INVALID RETURN IN MAIN PROGRAM
INVALID USE OF A LABEL

INVALID USE OF OUTPUT

INVALID USE OF PROCEDURE OR LABEL
LABEL ADDRESS ERROR

LABEL DOES NOT MATCH PC

LABEL TYPE IS INCOMPATIBLE

mmmmmmmmmmmmmmmmmmmmmmmmuﬂ'ﬁm-—nmmmmm

Appendix B: Error Messages 1-55

LEFT PARENTHESIS EXPECTED

LEXIC STACK OVERFLOW

LEXIC STACK OVERFLOW (ADD CASE)
LEXIC STACK OVERFLOW (EMBEDDED ASSIGN})
LEXIC STACK OVERFLOW (PUSH)

LITERAL STACK UNDERFLOW

LITERALLY TYPE IS INCOMPATIBLE
LOOPING IN EMIT OPERATION

LOST SYNCHRONIZATION 1

LOST SYNCHRONIZATION 2

LOST SYNCHRONIZATION 3

MAXIMUM LITERALLY NESTING EXCEEDED
MISPLACED STATEMENT

MISSING RIGHT PAREN

MODULE NAME IS NEEDED

MORE THAN 255 VALUE NUMBERS

MORE THAN ONE SUBSCRIPT

MULTIPLE ARRAY ATTRIBUTES

MULTIPLE AT ATTRIBUTES

MULTIPLE BASED ATTRIBUTES

MULTIPLE DATA OR INITIAL ATTRIBUTES
MULTIPLE MODULE NAMES ARE NOT ALLOWED
MULTIPLE PROCEDURE NAMES ARE NOT ALLOWED
MULTIPLE PROCEDURE TYPE DEFINITIONS
MULTIPLE TYPE DEFINITIONS

NAME IS NOT A LABEL

NAME IS NOT A REFERENCE

NAME IS NOT A STRUCTURE

NAME IS NOT A VALUE

NAME IS NOT AN ARRAY

NAME IS NOT AN IDENTIFIER

NAME IS NOT BASED

NAME IS NOT DEFINED

1-56 80/PC Language Reference Guide

NAME IS NOT MEMBER

NO BASE VARIABLE DEFINED

NO FILE NAME GIVEN TO INCLUDE

NO MATCHING BLOCK

NO PATH FOUND

NO VALUE RETURNED FROM FUNCTION
NODE SIZE TOO LARGE

NODE STACK OVERFLOW

NOT WITHIN A BLOCK

NUMBER EXPECTED

OPERAND MODES INCOMPATIBLE WITH OPERATOR
ORIGIN SYNCHRONIZATION

OUT OF RANGE GET_ADDR

OUTPUT BUFFER OVERFLOW

PREMATURE END OF FILE

PREMATURE END-OF-FILE

PREMATURE EOF

PROCEDURE NAME IS NEEDED

PROCEDURE NESTING LIMIT EXCEEDED
PUBLIC ATTRIBUTE IS INCOMPATIBLE
PUBLIC 1S INCOMPATIBLE WITH EXTERNAL AT
PUSHING ILLEGAL STATEMENT STRUCTURE
REAL CONSTANTS NOT SUPPORTED

REAL REQUIRED

REAL TYPE IS NOT SUPPORTED

RECURSIVE LITERALLY

REENTRANT ATTRIBUTE IS INCOMPATIBLE
REFERENCE REQUIRED

RESTRICTED ADDRESS CANNOT BE BASED
RESTRICTED ADDRESS REQUIRED
RESTRICTED CONSTANT EXPRESSION REQUIRED
RESTRICTED EXPRESSION REQUIRED

RIGHT PARENTHESIS EXPECTED

mmmmmmmmmmmwmmmm'nmmmw'ﬁmmm'n'né*nmmmm

mmmmémmmmmmmmmnmmmmmmmmméwmmmmmmm

Appendix B: Error Messages

SEGMENT WITH NO NAME

SEGMENT WRAPARCUND

SIMPLE VARIABLE REQUIRED

SIZE OF DATA EXCEEDS ALLOCATED SPACE
SORT FAILED

SOURCE LINE IS TOO LONG TO PROCESS
STACK IMAGE OVERFLOW; BASIC BLOCK TOO COMPLEX
STACK UNDERFLOW

STACK, MEMORY OR COMMON ENCOUNTERED
STACKBASE IS NOT SUPPORTED

STATE STACK UNDERFLOW

STATEMENT CANNOT BE LABELED

STRING EXPECTED

STRING TOO LONG

STRING TOO LONG FOR CONSTANT
STRUCTURE NESTING LIMIT EXCEEDED
STRUCTURE TYPE IS INCOMFPATIBLE

THEN OR SEMICOLON EXPECTED

TO REQUIRED

TOO FEW ARGUMENTS

TOO MANY ARGUMENTS

TOO MANY INCLUDE DIRECTORIES

TOO MANY LEXIC BLOCKS

TREE BUFFER OVERFLOW

TYPE DEFINITION 1S REQUIRED

TYPED PROCEDURE REQUIRED

UNCLOSED CONDITIONAL ASSEMBLY CONSTRUCTS
UNDECLARED PARAMETER

UNINDEXED ARRAY REFERENCE
UNKNOWN BLOCK TYPE

UNKNOWN COMPILER CONTROL
UNKNQOWN COMPILER CONTROL TYPE
UNKNOWN INCOMING MACRO TYPE

1-57

1-58 80/PC Language Reference Guide

Moo MBS E M E E Y

UNKNOWN MFD TYPE

UNRECOGNIZED JUMP TYPE
UNSUPPORTED BUILTIN FUNCTION
UNSUPPORTED VARIABLE UNIT NUMBER
UNSUPPORTED WORD INPUT OR OUTPUT
UNSUPPORTED WORD UNIT NUMBER
UNTYPED PROCEDURE REQUIRED

VALUE RETURNED FROM SUBROUTINE
WORD OR POINTER REQUIRED

WRONG NUMBER OF ARGUMENTS
WSTACK OVERFLOW

WSTACK UNDERFLOW

C. Formal Definition of Meta-Language

Chapter 3 provided an informal definition of the meta-language used to describe the
syntax of 80/PL. This appendix provides the formal definition of the meta-language.

1.
2.

3.

10.
11.
12,
13.

14.

grammar = rule*.

rule = variable ‘=’ definition ‘.’

definition = alternate [‘]’ alternate]*.
alternate = sequence*.

sequence = {unit | grouping | option} [**'].

grouping = ‘{’ definition [**’] }".
option = ‘[’ definition ["*'] 'J".
unit = variable | literal.

variable = lc-letter [Ic-letter | digit | ‘-']*.

literal = “'**[“*'''" | character}* ‘' '’ | uc-letter*,
lc-letter = any-lower-case-leiter.
uc-letter = any-upper-case-letter.

digit = any-decimal-digit.

character = any-character-except-quote.

The variables Ic-letter, uc-letter, digit, and character have been loosely defined for the

sake of simplicity. Formally, they can be defined by enumerating the characters which
actually form their definition.

Within a literal, an upper-case letter and the corresponding lower-case letter are
equivalent.

D. Linking With Tektronix Tools

Some versions of the 80/PC compiler can generate Tektronix-compatible object files (LAS
format). However, an application program frequently consists of several object files which
must be linked together. In any case, the linked application program must be assigned
physical addresses in the target system. This chapter addresses linking an application

program and assigning it physical addresses; both operations are performed with the
Tektronix link program.

D.1 WRITING A LINKER COMMAND FILE
It is normally simplest to write an 8080 linker command file directly as is discussed in
this section.

D.1.1 Important Symbaols

The 80/PC compiler uses several symbols which are defined at link-time to resolve certain
references.

HEAPBASEQQ This symbol is always required. It is the address of the stack segment
in Intel-format object files.

STKBASEQQ This symbol is always required. It is the largest address corresponding
to a byte in the stack (not the address of the first byte past the stack).

ENDREL This is the Tektronix equivalent of the MEMORY array. The linker
has virtually complete control over this symbol.

INSTRQQ This is the class name of all code segments produced by 80/PC.
DATAQQ This is the class name of all data segments preduced by 80/PC.

D.1.2 Example 1

An application consists of an 80/PL main program object module residing in root.q, and
two 80/PL suppaort object modules residing in first.q and second.q. The application has
<2700H bytes of code, <300H bytes of constants, <1800H bytes of data, <200H bytes
of stack, and no references to the MEMORY array. The target machine will have ROM
from locations 0-03FFFH, and RAM from locations 4800H-87FFH.

First, we define the link-time constants:

-D HEAPBASEQQ=8600H
-D STKBASEQQ=8TFFH

1-62 80/PC Language Reference Guide

Next, we define address ranges for the various classes:

-L class=INSTRQQ range 0040H-3FFFH
~L class=DATAQQ range 4800H-85FFH

The class names must be capitalized as shown. Since no memory range was split, it
is not necessary to name the memory ranges. Finally, we define the object files to be
linked:

-0 root.q

-0 first. g

-0 second. q

This gives us the linker command file

-D HEAPBASEQQ=8600H

=D STKBASEQQ=87FFH

-L class=INSTRQQ range 0040H-3FFFH
=L class=DATAQQ range 4800H-835FFH
-0 root.g

-0 first.q

-0 second.q

' D.1.3 Example 2

An application consists of an 80/PL, main program object module residing in main.q,
three 80/PL support object modules residing in sub1.q, sub2.q and sub3.q, and a library
of support routines residing in support.lib. The application requires a large amount of

. space for code, <OCQOH bytes for data, and <4000h bytes for the stack (the application
has several reentrant procedures, hence the large stack). The target machine will have
the following memory layout:

ROM locations 0-7FFFH, OF000H-OFFFFH
RAM locations 8000H-OEFFFH

{the ROM chip for locations 0-07FFH contains a complete interrupt-processing system,
written previously; the ROM chip for locations 0F800H-0FFFFH will contain a monitor
program; neither is actually available for the application itself).

First, we define the link-time constants:
~D HEAPBASEQQ=0B000H
-D STKBASEQQ=0EFFFH

Next, since the memory range for code is split, we name the part of memory available to
code:

-m instructions=0800H-07FFFH QFQ00H-0QF7FFH

Next, we define address ranges for the various classes:

-L. ¢lass=INSTRQQ range instructions
-L ¢lass=DATAQQ range B00Q0H-0AFFFH

Finally, we define the object files to be linked:

.“_,.,/

Appendix D: Linking With Tektronix Tools 1-63

-0 main.q
-0 subl.q
-0 sub2.q
-0 sub3.q
-0 support. lib

This gives us the linker command file

-D HEAPBASEQQ=0B000H

-D STKBASEQQ=0EFFFH

-m instructions=0800H-07FFFH OF000H-0FTFFH
-L class=INSTRQQ range instructions

-L ¢lass=DATAQQ range 8000H-0AFFFH

-0 main.q

-0 subl. g

-0 sub2.q

-0 sub3.q

-0 support. 1lib

D.2 INTERFACING TO THE 8540/8560

The 8080 ultimately communicates with the outside world through IN and OUT instruc-
tions. During program development, it is normally inconvenient to have specific i/o ports
assigned and connected to the development system. Normally, /o is performed through
interface routines (“read”, “write”) which exist in two forms, one for the final stage (in
which the appropriate IN and QUT instructions appear), and one for the development
state (in which “magic” linkages to the debugging/operating system appear). This chapter
addresses development-stage i/o on the Tektronix 8540.

D.2.1 The SVC Solution

A general solution to the ifo problem requires the use of the 8540 SVC (service call)
facilities, described in Section & of the Tektronix 8540 System Users Manual. Section D.4
and Section D.5 contain listings of some assembly-language and 80/PL procedures which
may simplify the 80/PC user’'s task of interfacing with the SVC facilities. This section
describes their function and use. It should be noted that object file format and SVC format
are not necessarily the same: although 80/PC produces Tektronix LAS-format object files,
the 8080 uses SAS-format SVC’s and SRB’s.

The procedures may be classified as

an initialization routine

SVC function routines

SVC interface routines

a four-byte utility routine

SVC executors [for emulation modes 0, 1, and 2)

The SVC function and interface routines are written to use a single SVC (namely, SVC1);
equally well, the SVC function and interface routines could be passed an SVC number
(1-8 or 0-7) as an extra argument. The SVC executors will function properly in either
case. The variable mode should be initialized to the desired emulation mode (0, 1, or
2).

1-64 80/PC Language Reference Guide

D.2.1.1 Initialization Routine

The routine initialize$srbs initializes the SRB pointer vector in low memory. It should
be called before any SVC function routine or SVC interface routine is called.

D.2.1.2 Four-Byte Utility Routine

The four-byte utility routine swap4 interconverts between LAS-format and Intel-format
4-byte quantities,

An LAS-long is a four-byte integer; its most significant byte is stored at its lowest-
addressed location, and its least significant byte is stored at its highest-addressed location.
An Intel-dword is also a four-byte integer; its least significant byte is stored at its
lowest-addressed location, and its most significant byte is stored at its highest-addressed
location. Since 80/PL has no dword data type, an Intel-dword is most conveniently
entered as a two-element array of words.

Swap4 takes two pointers as arguments {to the source valie and the target value),
and places the source bytes into the target, in reversed order.

D.2.,1.3 SVC Function Routines

The SVC function routines take arguments from the referencing 80/PL program. The
routines could be rewritten to also accept an SVC number (a byte or word argument}. The
SVC function routines pass a function number and their arguments to an SVC interface
routine, and optionally extract information from the appropriate SRB and return it. The
SVC function routines are not absolutely necessary; an industrious programmer could
define literals for the various function numbers, and just call the SVC interface routines.

Starred routines do not actually appear in the listing; their definition should be
obvious from the other routines.
D.2.1.4 Zero-Argument Routines
The following routines take no arguments.

svc$abort 1fh - abort program

svciexit iah - exit program
sve$last$coni 11h - get last CONI character
svcilog$error 09h - log error message
svciread$clock 16h - read program clock

Note that svelogerror logs the previous error status.

D.2.1.5 One-Argument Routines (Pointer)

The following routines take a single argument, a pointer, which points at a RETURN-
terminated filespec, specifying a load file to load. A pointer value is returned: the
transfer address.

svciloadsovl 17h - load overlay

Appendix D: Linking With Tektronix Tools 1-65

D.2.1.6 Two-Argument Routines {Byte, Pointer)

The following routines take two arguments. The first, a byte, is the channel number. The
second, a pointer, points at a RETURN-terminated name or filespec.

svc$assign$channel 10h - assign channel
sve$create$file 90h - create file
svciopenforread 30h - open for read
* svciopen$forfupdate 70h - open for read or write
* svciopen$forfwrite 50h - open for write

D.2.1.7 Three-Argument Routines {Byte, Pointer, Pointer)

The following routines take three arguments. The first, a byte, is the channel number.
The second, a pointer, points at a dword file offset. The third, a pointer, points at a
dword which will hold the returned value, the new file offset (after the seek).

svedseek$relsto$o 44h
* svc$seek$reltoeof 64h
* sgvclseek$relftos$here 24h

D.2.1.8 Three-Argument Routines (Byte, Byte, Pointer)

The following routines take three arguments. The first, a byte, is the channel number.
The second, a byte, is a number of bytes or characters to read or write. The third, a
pointer, points at a line or buffer. All the routines return a word value: the number of
bytes or characters read or written.

sve$read$ascigo 81lh - read ascii and proceed
svciread$asciwait 01h - read ascii and wait

* svciread$binggo 41h - read binary and proceed

* gvefread$bing$wait c¢lh - read binary and wait

* svelrewrite$ascigo azh - rewrite ascii and proceed

* svcirewritefascgwait 22h - rewrite ascii and wait

* svcfrewrite$binggo e2h - rewrite binary and proceed

* gvcirewrite$bingwait 62h - rewrite binary and wait
svciwrite$ascsigo 82h - write ascii and proceed
svelwrite$asciwait 02h - write ascii and wait

* svcBwritebingo 42h - write binary and proceed

* sgvciwritebinwait c2h - write binary and wait

D.2.1.9 Three-Argument Routines (Byte, Byte, Pointer}

The following routines take three arguments. The first, a byte, is the number (ordinal)
of the desired parameter. The second, a byte, is the maximum size of the parameter, in
bytes. The third, a pointer, points at a line or buffer which will hold the argument.

* svciget$emdiparm 13h -~ get command line parameter
* svcigetPexec$parm 16h - get execution line parameter

1.66 80/PC Language Reference Guide

D.2.1.10 SVC Interface Routines

The SVC interface routines accept an SVC function number and a number of other
arguments. These routines set up an SRB and then call svcgo. Svego calls the assembly-
language SVC executor appropriate to the selected emulation mode.

The following table lists the arguments for the various SVC interface routines.

SVCEOo (no arguments)
sVeX function (byte)
svexb function (byte), buffer {pointer)

svexch function (byte), channel (byte), buffer (pointer)

svexclb function (byte), channel (byte), length (byte), buffer (pointer)
svexd function (byte), offset (pointer)

svexplb function (byte}, position (byte), length {byte), buffer {pointer)

D.2.1.11 SVC Executors

The SVC sequence for emulation modes 0 and 1 requires an QUT instruction followed
by one NOP instruction; the sequence for mode 2 requires an OUT instruction followed
by twa NOP instructions. Since the compiler cannot generate arbitrary NOP’s, these
procedures must be written in assembly language. The assembly-language routine sveall1

performs the SVC sequence for emulation modes 0 and 1; svcall2 performs the sequence
for mode 2.

D.3 POSSIBLE TEKTRONIX LINKER ERROR MESSAGES

This section describes some of the common linker errors and the situations which provoke
them. It assumes that fairly standard linker commands are used; users sufficiently

sophisticated to use linker features not described in Appendix D are assumed to need no
further instruction here.

D.3.1 Section Names
The compiler names sections in the following manner:

IL.module the code section for module
C.module the constant section for module
D.module the data section for module

A.module the absolute section for module (not always present)

If the section name would be longer than 16 characters, the first 6 and the last 10
characters of the name are used.

D.3.2 Typical Errors
Errors which are commeonly encountered include:

Appendix D: Linking With Tekironix Tools 1-67

link:100 (S) Name symbol in section section previously defined — Symbol is
declared “public” in section. It was either declared “public” in some other
module, or it is one of the class names (INSTRQQ, DATAQQ) or address symbols
{HEAPBASEQQ, STKBASEQQ).

link:110 (E} No memory allocated to section — The memory range assigned to
the section's class of segments (code, constant, or data) is not large enough to
hold all of them. Section is effectively still relocatable. The memory range for
section’s class should be increased, or section’s size should be decreased.

link:114 (E} Absolute section section conflicts with -L switch — Section is ab-
solute, it appeared in a -L command, and the address in the -L command doesn’t
match the address of section. Remove the offending -L. command.

link:115 (E} Truncation error at address — A 16-bit address-like quantity does
not fit in 16 bits. Address is the physical address of the 16-bit quantity. It is not
the address of the referenced item (the target). Typically, it is the address of the
offset in an assembly-language instruction, which is 1-2 greater than the address
of the first byte in the instruction.

link:118 (W) Transfer address undefined — The object modules did not include a
main program, and no -x command appeared. This may be the desired situation.

link:119 (W) Processor changed from family-1 to family-2 — Different Tektronix
processors include different microprocessors in the same family. If both families
contain the desired target microprocessor, this warning is innocuous.

link:125 (W) Reserved name symbol used incorrectly — This appears to occur
when a user program defines ENDREL to be a public datum or procedure. The
linker has reserved the definition of ENDREL to itself.

.. link:128 (E] Absolute or symbol file section section cannot be relocated — Section
is an absolute section, and it appeared in a -L. command. This message appears

even if the address in the -L. command is appropriate to section. Remove the
offending -L. command.

D.4 ASSEMBLY-LANGUAGE ROUTINES FOR SVC’S
This section gives the Tektronix-assembler source for SVC routines for the 8080.

D.4.1 Utility Routines
These are utility routines used by other routines.

list dbg, xref, sym

name svesupportl

section i.svesupportl, class=INSTRQQ
global svcalll, svcall2

1* swap (v): return a word value with the bytes swapped

=
3

swap mov iI,b ; (bc) = value
mov h,¢c
ret

;* swapd (source-pointer, target-pointer): place the

1-68 80/PC Language Reference Guide

. 4-byte source value in the target, with
. with the bytes reversed (convert between

V¥ Intel and SAS dwords)
*

inx
inx
ldax
inx
stax
dex
ldax
inx
stax
dex
ldax
inx
stax
dex
ldax
stax
ret

ROCAATFFAADTCARADC ALLA

end

D.4.2 SVC Executors

These are the procedures to perform SVC's in emulation modes 0, 1, and 2 on the
Tektronix 8540.

list dbg, xref, sym

name svesupport2

section i.svesupport2, class=INSTRQQ
global svealll,sveall2

svecalll (sve-port): do a mode-1 sve

*
,*
;* sveall2 (sve-port): do a mode-2 sve
sk

svealll mvi 1, 0coh ; 'cet' instruction in (1)
jmp merge
sveall? lxi h, 0c900h ; 'nop' in (1)}, 'ret' in (h)
merge push h
mvi b,0 ; port in (e), ‘'nop' in (b)
push b
mvi b, 0d3h ; port in (c) (no longer needed),
i tout!' in (b
push b
lxi b, retadd ; return address from built-up
; procedure
push b
1xi h, 3
dad sp ; starting address of built-up
; procedure
pechl
retadd lxi h,8 ; prune built-up procedure

; from stack

Appendix D: Linking With Tekironix Toels 1-69

dad sp
sphl
ret

end

D.5 80/PL ROUTINES FOR SVC'S
This section gives the 80/PL source for SVC routines for the 8080.

svejtest:
do;

FAAS R LA it il E Rl il lll]

x L]
* Suitable for 8080/8085 Only =*
»* L]

tt*lt#*l**'.*"*#‘**!*#tﬂ*m##*i/

declare dot literally '.',
ptr literally ‘word';

/* "Index* is the sve we'll be using, TIt's declared
literally, although it could be passed through as
an argument to the procedures.

*/
declare index literally '0‘;
declare svel literally 'ofth’,

sve2 literally '0féh!',

sve3 literally '0f5h',

sved literally '0f4h’,

sves literally 'o0fsh',

svel literally t0f2h',

sveT literally 'ofih',

sve8 literally '0foh';
declare sve (B) byte public data ¢

svel, sve2, sved, sved, svel, sved, sveT, sved);
declare srb (8) structure (

fn byte,

chan byte,

status byte,

four byte,

count byte,

1th byte,

bufp ptr) public;

/* "Mode" is the mode (0, 1, 2) of the 8VC's. It
should correspond to the value selected with the
debugger EM command. It may be declared publie
to make it easier to find should it be necessary
to modify its value at debug-time.

*/
declare mode word initial (0);

svecallil:

procedure (n) external;
declare n byte;

1-70 80/PC Language Reference Guide

end svcalll;

svcall2:
procedure (n) external;
declare n byte;

end sveall2:

swap:
procedure (v) word external;
declare v word;

end swap;

swap4:
procedure (sp, tp) external;
declare (sp, tp) ptr;

end swap4;

* initialize$srbs

* This routine must be called before any sve is
*/
initialize$srbs:

procedure publie;
declare v (8) word at (40h):

v(0) = swap (dot srb(0)});

v(l) = swap (dot srb(l));
v(2) = swap (dot srb{2));
v(3) = swap (dot srb(3)};
vi{4) = swap (dot srb(4));
v(5) = swap (dot srb(5));
v(8) = swap (dot srb(8));
v{7) = swap {(dot srb(7));

end initialize$srbs;

svc$abort:
procedure public;

call svex (1fh);
end svc$abort;

svefexit$program:
procedure public;

call svex (lah);
end svegexit$program;

svc$last$eoni:
procedure byte publie;

used!

Appendix D: Linking With Tektronix Tools 1-71

call svex (1fh);
return srb (index).four;
end svc$lasticoni;

svelogerror:
procedure publie;

call svex (08h);
end svelogerror;

sve$read$clock:
procedure word publie;

declare w based * word;
call svex (1fh);

return (swap ({(dot srb(index).four)->w));
end svejread$clock;

sve$assign$channel:
procedure (¢, b) public;

declare ¢ byte, b ptr;

call svexch (10h, ¢, b);
end svciassignjchannel;

sve$create$file:
procedure (¢, b) public;

declare ¢ byte, b ptr;

call svexeb (90h, c, b);
end svc$create$file;

svciopen$forgread:
procedure (¢, b) public;

declare {c, b) word;

call svexcb (30h, ¢, b);
end svc$open$forsread;

svc3seekreltoso:
procedure (¢, op, r) public;

declare ¢ byte, (op, r) ptr;

1-72 80/PC Language Reference Guide

declare w based * word;
call svexed (44h, ¢, op);

call swapd4 (dot srb(index).count, r);
end svciseekreltos$o;

svc$loadsovl:
procedure (b) ptr public;

declare b ptr;
declare w based * word,
call svexb (17h, b);

return swap ((dot srb(index).four)->w);
end svc$load$ovl;

sveireadascgo:
procedure (¢, m, b) byte public;

declare (¢, m) byte, b ptr;
call svexclb (81h, ¢, m, b);

return srb(index).count;
end svciread$ascigo;

sve$read$asciwait:
procedure (c, m, b) word public;

declare (¢, m) byte, b ptr;
call svexeldb (01ih, ¢, m, b);

return srb{index).count;
end sves$read$asc$wait;

svciwrite$ascigo:
procedure (¢, m, b) word public;

declare (¢, m} byte, b ptr;
call svexclb (82h, ¢, m, b);

return srb(index).count;
end svelwriteascgo;

svciwrite$asciwait:
procedure (¢, m, b) word publie;

declare (¢, m) byte, b ptr;

call svexelb (02h, ¢, m, b);

Appendix D: Linking With Tektronix Tools

return srb(index).count;

end svelwrite$ascPwait;

svego:
procedure public;
declare a byte;

/> The next line is not necessary; it simply transfers
the function value through a register (A). It is
useful during debugging on the 8540: if the user
sets a breakpoint on the "if (mode < 2);" statement,
the function value is immediately visible in the
register display (one need not find the proper
address in the srb vector and execute a debugger
D command). It is most useful when index is a
variable rather than a literal.

*/

a = srb(index}.fn;
if (mode < 2);

call svcalll (sve(index));
else;

call svecall2 (sve(index));
endif;

end svcgo,

SVCX:
procedure (fn);
declare fn word;
srb(index).fn = fn;
call svego;

end svex;

svexb:

procedure (fn, b);
declare fn byte, b ptr;
srb(index).fn = fn;

srb {index) . bufp = swap (b};
call svego;

end svexb;

SVCXC:

procedure (fn, ¢);
declare (fn, c)} word;
srb(index).fn = fn;

srb(index).chan = ¢c;
call svcgo;

end svexe;

svexch:

1-73

1-74 80/PC Language Reference Guide

procedure (fn, ¢, b);
declare (fn, c¢) byte, b ptr;

srb(index).fn = fn;
srb (index) .chan = c¢;
srb (index).bufp = swap (b);
call svcgo;
end svexch;

svexed:
procedure (fn, ¢, op);

declare fn byte, ¢ byte, op ptr;

srb (index) .fn = fn;
srb(index).chan = ¢;
call swap4 (op, dot srb(index).count});
call svcgo;
end svexed;

svexclb:
procedure (fn, ¢, 1, b);

declare (fn, ¢, 1) byte, b ptr;

srb(index).fn = fn;
srb (index) .chan = c;
srb (index) . 1th 1;
srh (index) . bufp swap (b);
call svcpo;
end svcxelb;

svexplb:
procedure (fn, x, 1, b) public;

declare {fn, x, 1) byte, b ptr;

srb(index).fn = fn;
srb({index) .four = x;
srb(index).1lth = 1;
srb{index).bufp = swap (b);
call svego;

end svcxplb;

end;

Index

-a invocation option 4
-B invocation option 5
-d invocation option 3, 5
-E invocation option 5
-F invocation option 3

-1 invocation option 4, 5
-J invocation option 3

-K invocation option 5
-L invocation option 3, 4
-0 invocation option 4
-p invocation option 4. 5
-s invocation option 4

-t invocation option 4, 5
-TT invocation option 5
-V invocation option 5
-¥ invocation option 4
-Xi invocation option 4
-Xl invocation option 4
-Xp invocation option 4
-Xs invocation option 4
-Z invocation option 4

A file suffix 5
.q file suffix 3
.8 file suffix 4

/CROSS_REFERENCE qualifier 7
/DEBUG qualifier 7

/DEFINE qualifier 8

/INCLUDES qualifier 8

/LIST qualifier 7
/MACHINE_CODE qualifier 7
/NOCROSS_REFERENCE qualifier 7
/NODEBUG qualifier 7
/NOLIST qualifier 7
{INOMACHINE_CODE qualifier 7
/NOOBJECT qualifier 7
/NOOPTIMIZE qualifier 8

1-76 80/PC Language Reference Guide

{NOZ80_CODE qualifier 8
{QBJECT qualifier 7
{OPTIMIZE qualifier 8
{SYNTAX qualifier 8
{Z80_CODE qualifier 8

80/PC invocation 3, 6
80/PC overall operation 9
80p1 compiler phase 9
80p2 compiler phase 9
80pcg compiler phase 9
80pfo compiler phase 9
80pjo compiler phase 9
80pl.lib 13

80pp compiler phase 9
BOpsym compiler phase 9
80pxrf compiler phase 9

ABS builtin 43

Absolute base 36

ADDRESS data type 24
Addresses 35

Argument files 5

Arguments 29

Arrays 24

Assembly listing option (-a) 4
Assembly listing option (-S) 4
Assigning an SVC channel 65, 71
Assignment statement 28, 30, 39, 41, 46
Assignments, embedded 35

AT attribute 22

BASED attribute 23, 24, 36

Based references 36

Based variable 22, 23

Based, explicitly 47

Basic type attributes 24

Blanks 12

Block IF statement 27

BNF 15

BUILD$PTR builtin 43

Builtin for absolute value 40
Builtin for decimal adjustment 40
Builtin for stack pointer manipulation 41
Builtin for time delay 41

Builtin identifiers and functions 39
Builtin to reference memory 43
Builtins for input and output 43
Builtins for shifts and rotates 40
Builtins for size of variables 39
Builtins for string comparison 42
Builting for string moving 41

Builtins for string operations 41
Builtins for string scanning 42
Builtins for string setting 42
Builting for string translation 42
Builtins for subfield referencing 41
Builtins for type conversions 40
Builtins to test flag values 43
BYTE data type 24, 45

Byte variable 41

CALL statement 18, 29, 36
Capabilities and features 1
CARRY builtin 43

Carry machine flag 40
CASE statement 26

CAUSESINTERRUPT statement 30, 46
Character string builtin procedures 45

Class names 61, 62, 67

Class of procedures 19

CMPB builtin 42

CMPW builtin 42

Code segment 22

Codes, return 6

Comments 12

Compatible types 28, 28, 30
Compilation, conditional 11
Compile-time constants 10
Compile-time control language 9
Compile-time expressions 10
Compile-time variables 5, 8, 10
Compiler controls 9

Compiler debugging options 5
Compiler invocation 3, 6
Compiler version option (-V) 5
Completion status 9
Conditional compilation 11

Conditional expression 25, 27, 28, 31

Constant expression 47
Constant operand 23, 30, 35
Constants 37

Constants, compile-time 10
Contiguous allocation 21
Control line 9

Control, ELSE 11

Control, ELSEIF 11
Control, ENDIF 11
Control, IF 11

Control, INCLUDE 10
Control, RESET 11
Control, SET 10

Controls 9

Index 1-77

1-78 80/PC Language Reference Guide

Controls, unimplemented 12
Creating a file with an SVC 65, 71
Cross reference listing option (-x) 4

DATA attribute 22, 24

Data segment 22

Data types 45

Debug output 7

DEC builtin 40
Declarations 21
Declarations, factored 21
DECLARE statement 21, 46
Default file suffixes 4
Definition of a module 17
Differences between 80/PL and PL/M-80 45
Dimension attribute 24
Directory list option (-I) 5
DISABLE statement 30

DO groups 25

DO statement 25

Dollar sign 386, 37
DOUBLE builtin 40, 47

EJECT control 12

Element attributes 23

ELSE control 11

ELSE statement 28, 48
ELSEIF control 11

ELSEIF statement 28, 48
Embedded assignments 35
Emulation mode 63, 66, 68, 69, 73
ENABLE statement 30

END statement 25, 30

ENDIF control 11

ENDIF statement 28, 48
Endings 30

ENDREL 67

ENDREL defined 61

Entry point of main program 17
Error message list 51

Error messages 51

Errors 51

Executable statements 25
Explicit base 23

Explicit base, absolute 36
Explicitly based references 36
Expression operators 34
Expressions 33

Expressions, compile-time 10
Expressions, conditional 31
Expressions, restricted 23

Index 1-79

Extensions 46

Extensions compatible with PL/M-86 45
EXTERNAL attribute 21, 23, 24, 46
External procedures 19

External variable 22

Factored declarations 21, 22
Fatal errors 51

Features and capabilities 1
FINDB builtin 42

FINDRB builtin 42
FINDRW builtin 42

FINDW builtin 42

FIX builtin 43

FLOAT builtin 43

Formal definition of meta-language 59
Format of source 12
Format, object module 13
Function reference 18
Functions 18, 36

Getting parameters with SVC's 65
GOTO statement 18, 29
Grammar 15

Group label 26

Group names 25

HALT statement 30
HEAPBASEQQ 67
HEAPBASEQQ defined 61
HIGH builtin 41, 47

IABS builtin 40

Identifiers 36

IF block 27, 48

IF control 11

IF statement 27, 28

Implied base 23

INCLUDE control 10

Inexact reference 36, 39
INITIAL attribute 22, 24
Inline support option (-F) 3
INPUT builtin 43

INT builtin 40, 47

INTEGER builtin procedures 45
INTEGER data type 24, 35, 45
Internal procedures 19
INTERRUPT attribute 47
Interrupt procedures 19
Interrupt vector 19
Introduction 1

Invocation options 3,7

1-80 80/PC Language Reference Guide

Invoking 80/PC 3

Invoking 86/PC 6

INWORD builtin 43

Iterative DO statement 26, 36

Jump optimizer option (-]] 3
JUMPS option 8

LABEL attribute 21

Label definitions 30

Label reference 29

Label, group 25

LAST builtin 39, 47

LENGTH builtin 39, 47

Library, run-time support 13
Lines per page 4
LINE_NUMBERS option 7

LIS file type 7

LIST control 12

List of error messages 51

Listing controls 12

Listings 7

LITERALLY attribute 22

Literals in the meta-language 15
Loading an overlay with an SVC 64, 72
Local symbol record option (-d) 3
Local symbol record option (-L) 3
LOCKSET builtin 43

Long constant 23

LOW builtin 41, 47

Machine flag, carry 40
Machine flags 43

Main programs 17

MEMORY array 61

MEMORY builtin 21, 43
Memory range names 62
Meta-language, formal definition 59
Meta-language, introduction 15
Miscellaneous SVC’s 64, 70, 71
Module definition 17

Module level 17, 19, 22, 23
Module name 17

Modules 17

MOVB builtin 41

MOVE builtin 42

MOVRB builtin 41

MOVRW builtin 41

MOVW builtin 41

Named memory ranges 62
Naming convention 66

Index 1-81

Naming scope 17, 18, 25, 27, 29
Newline character 12

NOJUMPS option 8

NOLIST control 12

Non-terminal symbols 15
NOPREPROCESS_ONLY qualifier 9
NOSUBEXPRESSIONS option 8
Nul! statement 29

Numeric constants 37

Object module 17

Object module format 13

Object module name format 3, 6
OFFSET$OF builtin 43

Opening files with SVC's 65, 71
Operands, constant 35

Operators 34

Optimization 22

Optimization suppression option (-0) 4
Options to control the preprocessor 5, 8
Options, invocation 3,7

Out-of-line routines 13

OUTPUT builtin 43

OUTWORD builtin 43

Overall operation 9

Overflow 26

Pao file type 6

Parameter fetching with SVC’s 65
Parameters of procedures 18
PARITY builtin 43

POINTER data type 24, 45
Preprocessor control options 5, 8
PREPROCESS_ONLY qualifier 9
Procedure class 19

Procedure declarations 18
Procedure parameters 18
Procedure scope 18

Procedure, typed 18

Procedure, untyped 18
Procedures 17

Procedures, external 19
Procedures, interrupt 19
Procedures, reentrant 19
Pseudo-function 39, 41, 43
PUBLIC attribute 21, 23

Public procedures 19

Qso file type 6,7

Reading files with SVC’s 65, 72
REAL data type 24, 45

1-82 80/PC Language Reference Guide

Recognition of statements 13
Redirecting standard error file 6
Reentrant procedures 19
References 35

Relational operators 34
Reserved words 13, 46

RESET control 11

Restricted expression 22, 23, 47
Restricted reference 23, 26, 29, 36
Return codes 6

RETURN statement 18, 29
Rewriting files with SVC’s 65
ROL builtin 40

ROR builtin 40

Rules 15

Run-time support library 13

SAL builtin 40

SAR builtin 40

SCL builtin 40

Scope of names 17, 25, 27, 29
Scope of procedures 18

SCR builtin 40

Section names 66

Seeking on f{iles with SVC's 85, 71
SELECTORS$OF builtin 43
SET control 10

SETB builtin 42

SETW builtin 42

Severe errors 51

SHL builtin 40

SHR builtin 40

SIGN builtin 43

SIGNED builtin 40

Simple statements 28

SIZE bailtin 39, 47

SKIPB builtin 42

SKIPRB builtin 42

SKIPRW builtin 42

SKIPW builtin 42

Source format 12

Source listing option {-1} 4
Special statements 30

SRB format 63

Stack pointer 29, 41
STACKBASE builtin 43, 45
STACKPTR builtin 41
Standard error file, redirecting 6
Statement labels 21, 30
Statement labels in main programs 17
Statement recognition 13

Index 1-83

STATEMENT_NUMBERS option 7
Status, completion 9
STKBASEQQ 67
STKBASEQQ defined 61
String constants 37
STRUCTURE attribute 24
Structure data type 46
SUBEXPRESSIONS option 8
Subroutines 18

SUBTITLE conirol 12

SVC format 63

SVC to assign a channel 65, 71
SVC to create a file 65, 71
SVC to load an overlay 64, 72
SVC's — miscellaneous 64, 70, 71
SVC’s to get parameters 65
SVC's to open files 65, 71
SVC's to read files 65, 72
SVC’s to rewrite files 65
SVC'’s to seek on files 65, 71
SVC’s to write files 65, 72
Symbolic listing 7

Symbolic listing option (-a) 4
Symbolic listing option {-§) 4
Syntax checking option (-s) 4

Target reference 36

TIME builtin 41

TITLE control 12

Type attributes 24

Typed procedure 18, 29, 39

UNDO statement 25, 26, 48
Unit of compilation 17
UNSIGN builtin 40, 47
Untyped procedure 18, 29, 39

Variables, compile-time 5, 8, 10
Version number of compiler (-V) 5

Warnings 51

WHILE statement 25

WORD data type 24, 45

Word variable 41

Writing files with SVC’s 65, 72

XLAT builtin 42

Z80 code generation 8
Z.80 code generation option (-Z) 4
ZERO builtin 43

