Part Two

80/AS Assembler
Reference Guide

Table of Contents

Chapter 1 Introduction

............................ 1
1.1 Features and Capabilities 1
1.2 Object Module Format 2
Chapter 2 Using the 80/AS8 Assembler 3
21 Invoking 80/AS Under UNIXand PC-DOS 3
2.1.1 InvocationOptions 3

2.1.2 Argument Concatenation 5

213 ArgumentFiles L 0oL 5

2.1.4 Redirecting the Standard ErrorFile 5

2.1.5 Invocation Examples 6

2.2 ReturnCodes L . . e e 6
2.3 Invoking 80/ASUnder VMS o 7
2.3.1 InvocationOptions 7

2.4 Completion Status L.]
Chapter 3 80/ASSyntax o i i e e 11
31 Symbols e e e e e 11
311 LocalSymbols, 11

31.2 Gemerated Symbols 11

3.2 Statement syntax L. L e e e e e e e e e e 11
3.21 LabelField e 11

3.21.1 Names v o e e e e e e e e 12

3.22 OperationField L 0oL 12

323 OperandField 12

324 CommentField, 12

3.3 Values L L e e e e e e e e e e e e 12
3.31 Symbols e e e e 12

3.3.2 Constants L ... e e e e e e 12

3.3.2.1 NumericConstants 13

3.3.2.2 CharacterConstants 13

3.3.2.3 OpcodesasConstants 13

3.3.3 RegisterNames oo 14

3.4 Expressions« « . v v v v 0 0 b e e e e e e e e e e e e e 14
3.4.1 OrderofEvaluation 14

3.4.2 Logical operators - NOT, AND,OR,XOR 14

3.4.3 Relational operators — LT, LE,EQ,NE,GT,GE 15

3.4.4 Arithmetic Operators - MOD, +, -, %,

2-ii 80/AS Assembler Reference Guide

3.5

Chapter 4 Assembler Directives |,

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4,17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.1
4.32

Chapter 5 Macros

5.1

5.2
5.3

3.4.5 Shilt operators — SHL, SHR
3.4.6 TheNULoperator

Instruction formats00 0L
351 NoOperands
3.5.2 One RegisterOperand

3.5.3 Two Register Operands
3.5.4 OneExpression
3.5.5 Omne Register and One Expression

.....

.cond
.eject
.gen . e e e e e e e e e e
dnclude
Jist L. L.
nocond
JOGED
aqolist L,
Jprint . .. L. e e
.restore
.save

.seg . . .
subtitle
ditle . .00 0oL oL
BSBE . .« . 4 e

..................

......
..........
..........
.......
......
.......
......
..........

.......

.........

.......
......
.........
......
.......
...........
.............
.......
.............
.....
.......
.....

.................

LI
.....

The MACRO dlI‘ECtIVE
5.1.1 The MacroName
5.1.2 Formal Macro Parameters

5.1.2.1 Forcing Recognition of Macru Parameters
The ENDM Directive
Macro Expansion
5.3.1 Macro Arguments . .

......

=y s

.......

........

. 15

15

. 16

. 16
. 16
. 16

.17

. 17

.....

. 19

... 19
. 20
.21

........

.. 22

23

.. 24
.. . 25
. . 26

.....

.. 27
. . 28

. 29
. 30

M) |
. 32

. 33

. 34

. 35

. 36
. 37
. 38

ooooo

.....

. . 39
. 40

41

. 42
. . 43
.. 44

. 45

. 46

. 47

. . 48
. . 49

. 50

+ 8 s

. 51

R ¥/
. . 52
. 52

......

.....

. . 853
. b3

. . 53
.. . 04

Table of Contents 2-iii

5.4 The LOCAL directive
5.5 The REPT directive
5.6 The IRP directive

5.7 The IRPC directive« « & v i vt e et e e e e e 56
5.8 The EXITM directive ‘

.......................... 57
59 MacroExamples Lo o e e e e e e e e 57

5.9.1 Generated SymbolsExample o0 0L L. 57

5.9.2 Argument QuotingExample 58
Appendix A ErrorMessages e 59
Al Warnings L L0 o e e e e e e e e e e 59
A2 EITOTS . & & o v v v it e e e e e e e e e e e e e e e e e e 59
A3 SevereErrorso Lo s e e e e 63
A4 FatalErrors it e e e e e e e e e e e e 64
Appendix B Glossary of Directives 65

Index

1. Introduction

This portion of the Experts-PL/M™ manual describes the syntax of the 80/AS™ assembly
language, and the operation of the BO/AS assembler. It is intended to be used primarily
as a reference guide, and not as a tutorial. Some familiarity with assemblers in general
is assumed, as well as an understanding of the 8080/8085 or Z80 microprocessor.

1.1 FEATURES AND CAPABILITIES

The 80/AS language is sufficiently similar to Intel's 8080/8085 Assembly Language that
programs written for that assembler should assemble correctly using the 80/AS assembler
with little or no modifications to the source.

The most significant area of change is in the handling of assembler controls. Instead
of having special control lines beginning with a ‘$’, 80/AS has assembler directives that
appear in the operation field of statements. For a discussion of each assembler directive,
see directives. A glossary of the directives and their formats is the subject of directivesA.

The other significant modifications or extensions are enumerated below.

e Optional use of names up to 31 characters in length. This allows direct access
to all symbol names output by 806/PC.

¢ Common segments accessible for initialization and reference. Blank common and

up to 249 named commons may be accessed, and their relocatabilities may be set
to BYTE, PAGE, or INPAGE.

¢ Symbols with limited scope. Local symbols of the form #name only retain their
definitions between the nearest preceding and following non-local labels. This
provides a convenient way of generating labels for small Ioops, while at the same
time minimizing the chance of multiple definition of symbols.

® Recognition of a limited number of Z80 instructions. The short relative jump {jr,
jre, jrne, jrz, and jrnz) and word add and subtract {dadc and dsbb) instructicns
can be recognized and assembled correctly by 80/AS. The short jump instructions
may also be translated into their 8080 equivalents, allowing the programmer to
write a single routine that will take advantage of the shorter Z80 instructions, yet
still be able to reassemble it and run it on an 8080 or 8085.

The assembler operates under the VAX/VMS™, UNIX™, and PC-DOS operating systems.

2-2 80/AS Assembler Reference Guide

1.2 OBJECT MODULE FORMAT

The object module produced by 80/AS are in the Intel MCS-80/85 Relocatable Object
Module Format.

2. Using the 80/AS Assembler

This chapter explains how to use 80/AS in the various operating system environments
and discusses the various invocation options in detail.

2.1 INVOKING 80/AS UNDER UNIX AND PC-DOS
Under the UNIX and PC-DOS operating systems, the 80/AS Assembler is invoked by

80as [option...] source-file [source-file...]

80/AS requires one or more named files as input; if more than one input file is specified,
the files are assembled separately. The name of each object file is derived from the input
file name by stripping off any “.*” suffix, and postpending the “.q" suffix.

2.1.1 Invocation Options
The normal operation of 80/AS may be modified by several invocation options. These

are

-c Do not list source lines that were from the false branch of a conditional
assembly. These lines are normally listed. Specifying the -c option has the
same effect as placing the NOCOND directive at the beginning of the source

file.

-d Generate local symbol records in the object file for use in debugging. These
records are not normally produced.

-f Generate a form feed (control L) at the end of each listing page. Whether
a form feed or blank lines are generated by default is set at the time of
installation.

-F Generate the appropriate number of blank lines at the end of each listing

page. Whether a form feed or blank lines are generated by default is set at
the time of installation.

-8 Only list the generated code for macro expansions. This option limits the
number of lines that appear in macro expansions. If a statement within a
macro expansion does not generate any object bytes and the -g option is
in effect, that statement will not be listed. Normally, all lines from macro

2-4 80/AS Assembler Reference Guide

-Ilist

-llengih

-m

-

-8

-wwidth

-z

-Z

expansions are listed, so this option has no effect unless the -m option (don't
list macro or repeat block expansions) is also specified.

Specify a list of directories to search for include files; list is a colon-separated
list of directories where include files are sought if not found in the directory
of the source file. Multiple -I options may be specified. If an alternate search
path is not specified, 80/AS will look in the directory of the source file,

and then in the current directory, for any include files whose names are not
rooted.

Set the page length for listing to length lines. The length includes seven
heading lines and three blank footing lines. If length is 0, the page length
becomes infinite. In this case only the beginning of the listing, the beginning
of the cross reference (if requested) and the beginning of the error listing
(if any errors were detected) will cause a new page to be started. If this
option is not used the installation default length is used for any listing output.
Note that the use of the -1 and -w options do not, by themselves, request
the assembler to produce a listing and/or cross reference — see the -p and -x
options.

Do not list macro expansions. Only the macro call will appear in the listing.
Specifying the -m option has the same effect as placing the NOGEN directive
at the beginning of the source file. The default is to list macro expansions.

Do not generate an object file.

Produce a listing on the standard output. By default, no listing is generated.
If either the width or the length is not also specified in the command tail,
installation default values will be used.

Run in compatibility mode. All identifiers are silently truncated to 6 charac-
ters in length. Normally, identifiers may be up to 31 characters in length,
simplifying the interface with programs written in 80/PL, but some existing

assembly language programs may not assemble correctly with long identifiers
enabled.

Set the page width to width characters. If this option is not used, the instal-
lation default width is used for any listing output. Note that the use of the -
1 and -w options do not, by themselves, request the assembler to produce a
listing and/or cross reference — see the -p and -x options.

Produce a cross reference after the source listing (if also requested) on the
standard output. The page width and length are the same as for the listing.
Normal action is to suppress the cross reference listing.

Map certain Z80 ops into 8080 equivalents. The 80/AS assembler recognizes a
few Z80 ops (jr, jrz, jrnz, jrc, jrnc, dadc, dsbb) and generates Z80 instructions
for them (These are the Z80 instructions that may be output by 80/PC when
its -Z option is specified). The 80/AS -z option will translate the short
relative Z80 jumps into their 8080 equivalents — the word add and subtract
instructions have no 8080 single instruction equivalents, and an error message
will be igsued if either is encountered.

Do not treat the Z80 ops as instructions. If your code contains user-defined
symbols that conflict with the Z80 instructions (jr, jrz, jrnz, jre, jrnc, dadc,

-Bstring

-Xsaaa
-Xoaaa

-Xlaaa

Xtaaa

Chapter 2: Using the 80/AS Assembler 2-5

dsbb), you will need to use this option.

Prepend string to the name of each assembler phase before executing it, thus
allowing alternate versions of the assembler to be executed. This option may
not be supported on all versions of 80/AS.

Specifies, as aaa, the default suffix to use for source file names that are not
given with a suffix.

Specifies, as aoa, the suffix to be used on object files in place of the default
‘l.qi”

Specifies that any listing produced will be directed to a file, instead of to
the standard cutput. The file will have the same name as the corresponding
source file, but with a suffix of aaa.

Specifies, as aaa, the prefix to be used on all temporary file names, instead of
the default ‘“A\tmp\” under PC-DOS or “/usr/tmp/” under UNIX. As an example,
“.Xt./” will cause temporary files to be created in the current directory (i.e.,
the one in use when 80/AS is invoked).

2.1.2 Argument Concatenation

80/AS options may be concatenated, provided that any option that requires a non-numeric
operand (e.g. -llist) is not followed by any other option. For example, the invocations

80as -p -166 -w79 -x -I/usr/include test.s

and

80as -plesw79xI/usr/include test.s

are equivalent.

2.1.3 Argument Files
Any command line argument may have the form

@argfile

where argfile is a file containing more arguments. This is particularly useful in cases
where more arguments are required than will fit on the original command line.

2.1.4 Redirecting the Standard Error File

Error messages are written on the standard error file, which is usually the display screen.
This may be changed by using a command line (or argument file) argument of the form

Arerrfile

where errfile is the name of the file to receive error messages. If the argument has the

form

Arerrfile

the messages will be appended to the file.

2-6 80/AS Assembler Reference Guide

2.1.5 Invocation Examples

The command
B0as -pxF -wl06 -166 ctest.s > ctest.l

will agsemble the file ctest.s, putting the object into ctest.q, and generating a listing (p)
and cross reference (x) with a page width of 106 characters (w106} and page length of 66
lines (166). Each page will be filled out with blank lines (F) rather than with a form feed,
and the entire listing will be output to ctest.l (redirection of standard output).

2.2 RETURN CODES

Several different values may be returned by 80/AS, either because of some error detected
by the assembler, or because of a * PRINT' directive in the source program (see Sec-
tion 4.9). The value returned by 80/AS indicates the most severe error it encountered
during operation. The possible return values caused by assembler-detected errors are 0
- 4, As the return value gets larger, so does the severity of the indicated error.

The interpretation of error levels is as follows:

0 Informative. No error was detected.

1 Warning. An error was detected, but the assembler could still process the
statement; however, the result might not be what the programmer intended.

2 Error. An error was detected, and the assembler had to abandon the statement.
Most errors will be of this type. If the statement appeared to be an instructicn,
three null bytes (8080 NOP instruction) are inserted into the object module,
to allow patching at execution time.

3 Severe Error. An error from which the assembler could not recover was
encountered, causing the assembly to terminate. An example of this type of
error is dynamic memory overflow.

4 Fatal Error. Errors of this type are internal assembler errors, and should not
occur in normal operation.

See Appendix A for a list of error messages.

Chapter 2: Using the 80/AS Assembler 2-7

2.3 INVOKING 80/AS UNDER VMS
Under the VMS operating system, the B0/AS assembler is invoked by:

80AS [options] source-file-name

Command Qualifiers: Defaults:

/ [NO] CROSS_REFERENCE /NOCROSS_REFERENCE

/ [NO]1DEBUG= (options) /NODEBUG

/ [NO] FORM_FEED /FORM_FEED

/ [NO] IGNORE_ZB0 /NOIGNORE_Z80

/INCLUDES= (directory,...)

/LENGTH=1en /LENGTH=66

/[NOJLIST[=file-spec] /NOLIST

/ [NO]MAP_Z80 /NOMAP_Z80

/ [NO1OBJECT[=file-spec] /OBJECT

/SHOW= (options) /SHOW= {CONDITIONALS,
EXPANSIONS)

/ [NO] SHORT.NAMES /NOSHORT_NAMES

/WIDTH=wid /WIDTH=106

The normal assembler operation is assemble the specified file and place the output in a
file with the same name and an extension of “Q80”. The default extension for the source

file is “A80™. 1i a listing file is produced, it will by default have the same name as the
source file with an extension of “.LIS”.

The object files are, in general, not immediately executable. They should be ul-
timately linked with any required libraries and then bound to addresses reasonable for
the final environment of the executable program.

The normal operation of the assembler may be modified by the use of various options
as described in the following section.

2.3.1 Invocation Options

fCROSS_REFERENCE
NOCROSS_REFERENCE

Controls whether or not a cross-reference listing will be generated. If
so, it will appear at the end of the listing file. The default is
/NOCROSS_REFERENCE.

MDEBUG
/NODEBUG

Controls whether the assembler generates local symbol records in the object
file for possible use by a run-time debugger. The default is NODEBUG.

2-8 B80/AS Assembler Reference Guide

/FORM_FEED
NOFORM_FEED

Controls whether the assembler ends each listing page with a form feed

character (AL) or the appropriate number of blank lines. The default is
/FORM_FEED.

/IGNORE_Z80
/NOIGNORE_Z80

Controls whether the assembler recognizes certain Z80 instruction
mnemonics (jr, jrz, jrnz, jre, dade, dsbb) or treats those symbols as other
user-defined symbols. The default is NOIGNORE_Z80.

/INCLUDES=(directory,...)

Specify directories to be searched for an INCLUDE file if the file is not found
in the directory of the source file. The directories are searched in the order
given.

/{LENGTH=len

Sets the length of a page in the listing file, where len is the maximum number
of lines on a page, including the heading and footing. If len is zero, no
pagination is performed, except between the body of the listing, the error
messages, and the cross-reference (if requested). The default is [LENGTH=66.

/LIST[=file-spec]
/NOLIST

By default, the assembler does not produce a listing if run interactively. If
/LIST is specified, or the assembler is run in batch mode, the assembler
produces a source listing file with the same name as the input source file
but with a file type of “LIS”. This may be overridden by giving a file-spec.

MAP_Z380
/NOMAP_Z380

Controls whether the assembler maps (translates) Z80 short relative jumps
into their B080/8085 equivalents. The default is INOMAP_Z80.
[OBJECT{=file-spec]
NOOBJECT
Controls whether or not the assembler produces an object module. The

default is /OBJECT which produces an object model that has the same file
name as the source file and a {ile type of “Q80".

{SHOW =(options)

Controls whether certain kinds of source and generated code appear in the
listing file. The following options are available:

[NO]JCONDITIONALS List source lines that are within conditional
assembly blocks that were not assembled.

[NOJEXPANSIONS List macro and repeat-block expansions.

[NO]BINARY Only list macro and repeat-block expansions

if they generate object. The BINARY option

Chapter 2: Using the 80/AS Assembler 2-9

is only meaningful when combined with the
NOEXPANSIONS option.

The default is /SHOW=(CONDITIONALS, EXPANSIONS).
/[NO]SHORT_NAMES

Controls whether the assembler truncates all symbols to 6 characters in
length. /NOSHORT_NAMES allows symbols to be up to 31 characters in
length. The default is NOSHORT_NAMES.

WIDTH=wid

Sets the width of a listing page, where wid is the maximum number of
characters on a line. The default is /WIDTH=106.

2.4 COMPLETION STATUS

Several different values may be returned by B0/AS, either because of some error detected
by the assembler, or because of a “PRINT’ directive in the source program (see Sec-
tion 4.9). The value returned by 80/AS indicates the most severe error it encountered
during operation. The possible completion status values are:

Success No error was detected.

Warning An error was detected, but the assembler could still process the statement;
however, the result might not be what the programmer intended.

Error An error was detected, and the assembler had to abandon the statement. Most
errors will be of this type. If the statement appeared to be an instruction,
three null bytes (8080 NOP instruction) are inserted into the object module,
to allow patching at execution time.

Severe An error from which the assembler could not recover was encountered, caus-

ing the assembly to terminate. An example of this type of error is dynamic
memory overflow.

Fatal Errors of this type are internal assembler errors, and should not occur in
normal operation.

See Appendix A for a list of error messages.

3. 80/AS Syntax

This chapter describes the syntax of 80/AS, including a discussion of expressions.

3.1 SYMBOLS

Variables in 80/AS are called symbols. Symbols may be from 1 to 31 characters in length,
composed of alphabetic characters, numeric characters, and the characters ‘?*, *_’, and ‘@'.
An upper case letter and its lower case counterpart are considered to be the same letter
for purposes of symbol matching. Symbols must not begin with a numeric character.

3.1.1 Local Symbols

Symbols beginning with a ‘#’ are treated specially. If a symbol begins with the ‘#’
character, its definition and value are only known between the last preceding non-local
label (or start of program) and the first following non-local label (or end of program). This
symbol may be redefined outside its local block without causing a multiple definition
error, and will not appear in the cross reference or local symbol records. Labels of this

type are useful in constructing small loops without the necessity of creating a unique
name for the target.

3.1.2 Generated Symbols

The assembler generates replacement names of the form “??nnnn”, where nnnn is 0000,
0001, 0002, etc., in response to the LOCAL directive (Section 5.4). The programmer
should therefore avoid using symbols of that form.

3.2 STATEMENT SYNTAX

An 80/AS program is composed of a series of statements. Each statement is terminated by
a newline and may not be continued. A statement consists of up to four fields, separated
by one or more blanks or tabs. The four fields, in order, are the label field, the operation
field, the operand field, and the comment field:

label: operation operand ; comment

3.2.1 Label Field

The label f{ield begins the statement. A label is a symbol immediately followed by a
colon. It may be preceded by blanks or tabs. Many directives and all instructions may
be labelled. This causes the symbol to be given the value of the current location counter
before processing the rest of the statement. The relocatability of the symbol is that of the
current segment. A statement may consist solely of a label.

2-12 80/AS Assembler Reference Guide

3.2.1.1 Names

The SET, EQU, and MACRO directives require a name in the label field. A name is a
symbol not followed by a colon. The symbol is given a value and type that depend on
the specific directive. A single statement may not contain both a name and a label.

3,2.2 Operation Field

The operation field follows the label field. If there is no name or label, the operation field
may begin the line. The operation field contains either an Intel 8080/8085 instruction
mnemonic or an 80/AS assembler directive. Section 3.5 discusses the various formats

when the operation is an opcode mnemonic. The format for each directive is given in
Chapter 4.

3.2.3 Operand Field

The operand field follows the operation field. The specific operation determines which
operand format or formats are required. This field generally continues until either the
end of the line is reached, or until the comment field is encountered.

3.2.4 Comment Field

The comment field begins with a semicolon and continues until the end of the input
line. This field is ignored by the assembler, and may contain any printable character, as
well as blanks and tabs. A statement may consist solely of a comment.

3.3 VALUES

Many instructions and directives require an operand that represents a value. Each value
is maintained within the assembler in two parts, a number and a relocatability. The
numeric part of the value is a 16-bit unsigned quantity. The relocatability indicates the
segment with which the value is associated.

For example, the constant 10 has a numeric value of 10, and its relocatability is
absolute (it is not relocatable). A label that appears at the beginning of the code segment
has a numeric value of 0, and its relocatability is the code segment.

The different ways that values may be represented are discussed individually below.

3.3.1 Symbols

A user symbol represents a value (unless it is the name of a macro). A symbol is given
a value and relocatability either by use of the SET or EQU directives {see Chapter 4), or
by its appearance in the label field of a statement {see Section 3.2.1). Symbols that have
not yet been assigned a value are called undefined symbols; their value is taken to be
absolute 0. In most contexts, the value of a symbol need not be known until the second
pass, so forward referencing is allowed. For example, a jump instruction may refer to a
label that appears later in the program. Restrictions on forward referencing are discussed

in Section 4.25.
3.3.2 Constants

Constants are absolute quantities; they have no relocatability. They can be given in
several different formats. Examples of each are presented below.

Chapter 3: 80/AS Syntax 2-13

3.3.2.1 Numeric Constants

The assembler considers any token that begins with a digit to be a numeric constant.
Numbers that end with a digit or the letter ‘D’ or *d’ are interpreted as base 10 values.
Similarly, a terminal ‘B’ or ‘b’ implies a binary (base 2) number; a terminal *O’, ‘o’, ‘Q’,
or 'q’ implies an octal (base 8) number; and a terminal ‘H’ or ‘h’ implies a hexadecimal
number (base 16). The letters A-F when used in a hex value may be either upper or lower
case.

For example,
255 = 11111111B = 0377Q = 0ffh
but

FFH

is not a number, since it does not begin with a numeric character. Rather, it is the symbol
IIFFH,I-

3.3.2.2 Character Constants

Character constants are made up of 0 or more characters enclosed within single quotes
()- In order to include a quote within the string, use two successive quotes,

'Today''s date' ==> Today's date

A character string of length = 2 may be used wherever a numeric value is expected. A
string of length 0 has value 0; a string of length 1 has a value equal to the character’s
ASCII value; a string of length 2 represents a value whose high byte is the first character's
ASCII value and whose low byte is the second character’'s ASCII value.

For example

' ==> 0

'AY ==2 65 = 41H

‘ab' ==3 24930 = 6162H

‘abe! =z=> (cannot be represented as a value)

3.3.2.3 Opcodes as Constants

A complete instruction enclosed within parentheses evaluates to a byte constant whose
value is the first byte of object that the instruction would generate.

For example
(JMP START)
has the value 0C3H.

2-14 B0/AS Assembler Reference Guide

3.3.3 Register Names

The seven byte registers have the predefined names A (accumulator), B, C, D, E, H, and
L. The four word registers, three of which are composed of pairs of byte registers, have
the predefined names SP (stack pointer), B (B and C registers), D (D and E), and H (H
and L). In addition, some instructions can use the contents of the HL register pair as
the address in memory of the actual operand. In this case the HL register pair is called
M. Both upper and lower case register names are recognized. Whether a register name
represents a single byte register or a register pair is determined by the context in which
it is used. For example, the instruction

MOV A.B
moves the contents of the byte register B to register A, while
PUSH B

pushes the contents of the register pair BC onto the stack.

3.4 EXPRESSIONS

The assembler can perform assembly-time arithmetic on both absolute and relocatable
values, resulting in a value that may be either absolute or relocatable, depending on
both the operator(s) and operand(s). Internally, all values are held as 16-bit unsigned
quantities, and arithmetic is unsigned modulo 10000H. Operators that yield a logical
(true/false) result produce OFFFFH for true, and 0 for false.

3.4.1 Order of Evaluation

The order in which expressions with more than one operator are evaluated depends
upon the relative precedence of the operators. Terms containing operators with high
precedence are evaluated before those containing operators with a lower precedence. If
two terms have operators with the same precedence, the leftmost term is evaluated first.
The precedence of the various operators is:

highest parenthesized expression
NUL
SHL, SHR, MOD, *, /
+{unary and binary), -{unary and binary)
LT, LE, EQ, NE, GT, GE
NOT
AND
lowest OR, XOR

3.4.2 Logical operators - NOT, AND, OR, XOR

The AND, OR and XOR (exclusive or) operators take two 16-bit absolute value operands
and produce a 16-bit absolute result. The unary operator NOT produces the 1’s comple-
ment of its 18-bit absolute operand.

01110111B AND 00001101B ==> 00000101B
01110111B OR 00001101B ==> 01111111B
01110111B XOR 00001101B == 01111010B

NOT 00001101B ==> 11110010B

Chapter 3: 80/AS Syntax 2-15

3.4.3 Relational operators - LT, LE, EQ, NE, GT, GE

The relational operators compare two absolute or relocatable values. Relocatable

operands must have the same relocatability. The result of the comparison is either true
(OFFFFH) or false {0).

LT (less than) 1 LT 0 ==> false
LE (less than or equal) 1 LE 0 ==> false
EQ (equal) 1 EQ 0 ==> false
NE (not equal) 1 NE 0 ==> true
GT (greater than) 1 GT 0 ==> true
GE (greater than or equal) 1 GE 0 ==> true
3.4.4 Arithmetic Operators - MOD, +, -, %,/
There are five binary and two unary arithmetic operators:
“qr The binary “+” operator can take either two absclute values or an absolute

and a relocatable value as operands. If one operand is relocatable, the result
has that relocatability. Otherwise, the result is absolute.

The unary “+” operator is provided for completeness. The result is the same
as the operand.

L. L

The binary “-" operator takes (a) two absolute values, yielding an absolute
value; (b) an absolute value subtracted from a relocatable value, yielding a
result with the same relocatability as the subtrahend; or (c) two relocatable
quantities, with the same relocatability, yielding an absolute result.

The unary “~” operator returns the 2’s complement of its absolute operand.

el The “#" operator is the multiplication operator. Both operands must be
absolute values.

“e The *“/” operator is the division operator. Both operands must be absolute
values. The result of division by 0 is undefined.

MOD The MOD operator is the modulus operator. It returns the remainder of

division of the first operand by the second operand. Both operands must
be absolute values. The result of (number MOD 0) is undefined.

3.4.5 Shift operators - SHL, SHR

The shift operators require two absolute operands. The first is shifted left or right by the
number of bit positions given by the second operand. A right shift fills the high bit with
0, while a left shift fills the low bit with 0.
11111111B SHL 2
11111111B SHR 2

> 11111100B (shift left)
> 00111111B {shift right)

3.4.6 The NUL operator

This operator is generally used to test for the presence or absence of a macro parameter.
If the rest of the line following the NUL operator is blank {except for a comment), the
operator returns true (OFFFFH); otherwise the result is false (0).

An example of the use of the NUL operator is provided in Chapter 5.

2-16 80/AS Assembler Reference Guide

3.5 INSTRUCTION FORMATS

There are five different formats for instructions, differing only in the operand field (any
instruction may have a label and/or a comment field). Each is described below, with an
example.

3.5.1 No Operands

The mnemonic itself contains all the information required by the assembler to generate
the complete instruction.

Format
{label] op
Example

RET

3.5.2 One Register Operand

The single operand is either a register or a register pair. The specific instruction deter-
mines how the operand is interpreted.

Format

[label)] op reg
Example

POP B

pops the top two bytes off the stack into registers B and C, while
ADD B

adds the contents of byte register B to the accumulator.

3.5.3 Two Register Operands

The only instruction to use this format is MOV. The destination specifier precedes the
source specifier.

Format

[label] op regl, regd
Example

MOV A,C

moves the contents of byte register C to byte register A, and

MOV AM

moves the byte stored in memory at the address contained in the HL register pair to
register A.

Chapter 3: 80/AS Syniax 2-17

3.5.4 One Expression

The operand is evaluated as an expression (see Section 3.4). Some instructions require
that the value of the expression be a byte value; the high byte of the result must be either
all zeroes or all ones, giving a range of values from -256 {0FFO0H) to +255 (00FFH).

Format
[label] op expr
Example
ORI 01110111B
will OR the 8-bit value 77H with the contents of the accumulator.

3.5.5 One Register and One Expression

The Hrst operand is either a register or a register pair. The second is an expression,
which may be either an 8-bit or a 16-bit value, depending on the instruction.

Format
[label] op reg, exXpr
Example
MVI B,10
Ioads the byte register B with the value 10, and
LXI B, START
loads the register pair B and C with the value of START.

4, Assembler Directives

This chapter describes each of the directives, or pseudo-operations, which may be used
with the 80/AS assembler.
4.1 .COND

The .COND directive sets the “cond” listing control switch to yes. Using the conditional
assembly features of 80/AS, some input lines may be skipped by the assembler. When

the “cond” switch is set to no, these lines do not appear in the listing. The default setting
for the “cond” switch is yes.

The line containing the .COND directive never appears in the listing.
Format
{label] . COND

Notes

1. If the current setting of the “list” listing control switch is no, listing is suppressed,
and setting the “cond” switch will have no effect.
See Also

NOCOND (Section 4.6)

2-20 80/AS Assembler Reference Guide }

4.2 .EJECT

The .EJECT directive causes the current page to be ended and the heading for a new page
to be printed. The current page is ended either with a form feed or with the appropriate
number of blank lines needed to fill out the page, depending on the invocation option
(see Section 2.1.1 and Sectlon 2.3.1).

The line containing the .EJECT directive never appears in the listing.

Format
[label] .EJECT

Notes
1. I the “list” switch is no, the .EJECT is ignored.

Chapter 4: Assembler Directives 2-21

4.3 .GEN

The .GEN directive sets the “gen” listing control switch to yes; this switch controls
whether macro expansions will be listed. When set to no, only the macro calls are shown;

when set to yes, complete macro expansions are listed. The default setting for the “gen”
switch is yes.

The line containing the .GEN directive is never listed.
Format
[label] . GEN

Notes

1. If the “list” switch is set to no, the setting of the “gen” switch is irrelevant.
See Also
.NOGEN (Section 4.7)

2-22 80/AS Assembler Reference Guide

4.4 .INCLUDE

The .INCLUDE directive causes a new input file to be opened. Lines are read from this
new file and processed just as if they had come from the original source file. When the
end of the new file is reached, processing of the original source file resumes with the
statement following the .INCLUDE statement. The operand of the INCLUDE directive is
a quoted string; this is the name of the include file.

A rooted file name is assumed to be the complete path name of the include file.
Otherwise, the file is searched for in the directory of the original source file. An alternate
list of directories to search may be given when 80/AS is invoked. Invoke 80/AS with the
-llist option (or the /INCLUDES=(list} qualifier). The directories may be either rooted or
relative to the current directory.

A INCLUDE directive may appear within an include file; the entire process recurses.

Format
[label] . INCLUDE ‘file-name'

Examples

Under UNIX or DOS, to include the file “fust/users/dave/includes.d/io.h”, use
. INCLUDE '/usr/users/dave/includes.d/io. h'

Under VMS, the file “[users.test.include]io.h” can be included by
. INCLUDE ' [users. test. include]io. h!

To include the file “io.h” from the current directory, use
- INCLUDE tio. k'

If a collection of commonly-referenced include files is in the directory

“fusr/progA/include” and 80/AS is invoked with a -Ifusr/progAf/include switch, then the
directive

. INCLUDE 'defs. h'

will cause the assembler to look first for “defs.h” in the current directory {the null
directory name preceding the colon is equivalent to *“./’), and then to look for
“fusr/progA/include/defs.h”.

Chapter 4: Assembler Directives 2-23

4.5 .LIST

80/AS is capable of producing a formatted listing of the input source file and generated
object on the standard output. The “list” switch controls whether a given source line and
its associated generated object will be listed or not. The .LIST directive sets the “list”
listing control switch to yes. When set to yes, listing is enabled. The default setting for

the “list” switch is no; invoking 80/AS with the -p option (/LIST qualifier) sets the “list”
switch to yes.

The line containing the .LIST directive is not printed.
Format
[label] .LIST

See Also
NOLIST (Section 4.8)

2-24 80/AS Assembler Reference Guide

4.6 .NOCOND

The .NOCOND directive sets the “cond” listing control switch to no. Using the condi-
tional assembly features of 80/AS, some input lines may be skipped over by the assembler.
When the “cond” switch is set to no, lines that are within unprocessed conditional as-
sembly blocks are not listed. The conditional assembly directives themselves are also
not listed. The default setting for the “cond” switch is yes; invoking 80/AS with the ¢
option (/fSHOW=NOCONDITIONALS qualifier) sets the “cond” switch to no.

The line containing the .NOCOND directive never appears in the listing,
Format
[label] . NOCOND
Notes

1. If the current setting of the “list” listing control switch is no, listing is suppressed,
and setting the “cond” switch will have no effect.

See Also
.COND (Section 4.1)

Chapter 4: Assembler Directives 2-25

4.7 .NOGEN

The NOGEN directive sets the “gen” listing control switch to no; this switch controls
whether macro expansions will be listed. When set to no, only the macro calls are shown;
when set to yes, complete macro expansions are listed. The default setting for the “gen”

switch is yes; invoking 80/AS with the -m option (/SHOW=NOEXPANSIONS qualifier)
sets “gen” to no.

The line containing the NOGEN directive is never listed.
Format
[label] . NOGEN

Notes

1. If the “list” switch is set to no, the setting of the ““gen” switch is irrelevant.
See Also
.GEN (Section 4.3)

2-26 80/AS Assembler Reference Guide

4.8 NOLIST

The .NOLIST directive sets the “list” listing control switch to no. The “list” switch
controls whether a given source line and its associated generated object will be listed or
not. When set to no, lines are not listed and .EJECT directives have no effect.

The line containing the .NOLIST directive is never listed.
Format
[label] .NOLIST

See Also
.LIST (Section 4.5)

Chapter 4: Assembjer Directives 227

4.9 PRINT

The .PRINT directive causes a user-supplied error message to be printed on the standard
error and entered in the error log printed at the end of the listing {if a listing was reques-
ted). An error level is associated with the message, allowing premature termination of
the assembly. The assembler returns values of 0 (informative - no errors) through 4 (fatal
error), but any value may appear in the PRINT statement. However, any value greater
than 2 (error) will cause immediate termination of the assembly. See the discussion of
error levels in Section 2.2 and Section 2.4 for more discussion of return codes.

The .PRINT directive itself will not appear in the listing.
Format

[label] .PRINT expression, 'message’

Example

The .PRINT directive is especially useful when coupled with conditional assembly within

macros. If a necessary parameter is not provided, or a value is outside its allowable range,
an error can be printed.

IF NUL ARG1
.PRINT 2, 'Argl required but missing'
ELSEIF ARGl GE 256

.PRINT 2, 'Argl must be less than 256°'
ENDIF

2.28 80/AS Assembler Reference Guide ‘ \

4.10 .RESTORE

The .RESTORE directive restores the settings of the “list”, “gen”, and “cond” listing
switches that have been saved with a .SAVE directive {Section 4.11).

The line containing the .RESTORE directive does not appear in the listing.

Format
[label] . RESTORE

See Also
.SAVE (Section 4.11)

Chapter 4: Assembler Directives 2-29

4.11 .SAVE

The .SAVE directive saves the current settings of the “list”, “gen”, and “cond” listing

switches on a stack. A subsequent RESTORE directive (Section 4.10) will restore the
settings of the listing switches.

The save/restore mechanism is useful when writing macros that may be called from
different places within the program, with potentially different listing switches in ef-
fect. At the beginning of the macro expansion, the switches are saved and altered ap-

propriately. Just before the macro expansion ends the switches are restored to their
previous values.

The .SAVE directive is not listed.
Format
[label] . SAVE

See Also
.RESTORE (Section 4.10)

2-30 80/AS Assembler Reference Guide

412 .SEG

The .SEG directive allows the programmer to access the stack (seg id 3), memory (seg id
4), and ynnamed common (seg id 255) segments, and to define up to 249 named common
segments. The assembler saves the current location counter for the old segment, and
sets it to the last value it had in the new segment. If the segment has not yet been
referenced, the location counter is set to 0. The segment relocatability type may also be
specified; each SEG directive referencing a given segment must specify the same segment
relocatability type.

Format
[label] SEG seg-name [, type-spec]

where type-spec is either PAGE or INPAGE. If the segment relocatability type is not
specified, the relocatability type will be BYTE.

Seg-name is one of

i the segment is set to unnamed common

STACK the segment is set to the stack segment

MEMORY the segment is set to the memory segment

other name if the name is undefined, a new common segment is created with the

given name. If the name has already been defined as a common segment,
that becomes the new segment; otherwise the statement is in error.

See Also

ASEG directive (Section 4.15),
CSEG directive (Section 4.16),
DSEG directive (Section 4.19)

Chapter 4: Assembler Directives 2.31

4,13 .SUBTITLE

The .SUBTITLE directive allows the programmer to set and change the subtitle that
appears in the heading for each listing page. The .SUBTITLE directive may be used as
often as desired. If a new page is to have a new subtitle, be sure to place the .SUBTITLE
directive before the .EJECT directive, since the title and subtitle in effect at the time of
the eject will be used for the new page heading.

The .SUBTITLE directive is not listed.
Format

[label] . SUBTITLE 'subtitle string'
2z
The operand is a quoted string. If the string is the null string, the current subtitle will
be deleted.
Notes

1. The first subtitle encountered will appear on the first page, and on all following
pages, until after the next subtitle directive is encountered.

2. In the error listing and cross reference listing, the space occupied by the subtitle is
occupied by the “ERROR LISTING” and “CRCSS REFERENCE” strings, and so is not
available to the programmer.

2.32 80/AS Assembler Reference Guide

4.14 .TITLE

The .TITLE directive allows the programmer to set and change the title that appears in
the heading for each listing page. The .TITLE directive may be used as often as desired.
If a new page is to have a new title, be sure to place the .TITLE directive before the
.EJECT directive, since the title and subtitle in effect at the time of the eject will be used
for the new page heading.

The .TITLE directive is not listed.
Format
[label] .TITLE ‘title string'

The operand is a quoted string. If the string is the null string, the current title will be
deleted. :

Notes

1. The first title encountered will appear on the first page, and on all following pages,
until after the next title directive is encountered.

Chapter 4: Assembler Directives 2-33

4.15 ASEG

The ASEG directive sets the current segment to be the absolute segment. The assembler
saves the current location counter for the old segment, and sets it to the last value it had
in the absolute segment. By default, object is placed in the absolute segment, beginning
at location 0.

Format
[label] ASEG

See Also

.SEG directive (Section 4.12),
CSEG directive (Section 4.16),
DSEG directive (Section 4.19)

2-34 80/AS Assembler Reference Guide

4.16 CSEG

The CSEG directive sets the current segment to be the code segment (seg id 1). The
assembler saves the current location counter for the old segment, and sets it to the last
value it had in the code segment. The segment relocatability type may also be specified;
each CSEG directive must specify the same segment relocatability type.

Format
[label] CSEG [, type-spec]
where type-spec is either PAGE or INPAGE. If the segment relocatability type is not
specified, the relocatability type will be BYTE.
See Also

.SEG directive (Section 4.12),
ASEG directive (Section 4.15),
DSEG directive (Section 4,19)

Chapter 4: Assembler Directives 2-35

4.17 DB

The DB directive is used to put byte expressions and quoted strings into the object
module. The expression may be absolute, relocatable or external, but all terms must
have been defined when the expression is evaluated in the second pass.

Format
{label] DB expr-or-string(, expr-or-string ...]

expr-or-string is either an expression that evaluates to a byte value [the high byte of the
value is either 0 or OFFH), or a quoted string. If more than one expression or quoted
string appears in a DB directive they must be separated by commas.

Example

A program needs to print a signon message when it starts up. The output routine expects
all strings to end with a null byte. A possible DB statement for the signon message is

CR EQU ODH

LF EQU OAH
SIGNON: DB tWelcome to Mars!', CR, LF, 0

Notes

1. The current location counter is incremented after processing each member of the list
of expressions or quoted strings. This means that the value of the “$” term changes
from expression to expression when there is a list of expressions or quoted strings.

See Also
DW directive (Section 4.20)

2-36 80/AS Assembler Reference Guide

4.18 DS

The DS directive increments the current location counter by the value of its operand,
effectively allocating uninitialized space. The operand of DS must be an expression
that evaluates to an absolute value; since the location of all labels must be determined
by the end of the first pass, the increment expression must be defined when it is first
encountered.

Format
flabel] DS expr

Example
To allocate a 128 byte buffer:

INBUF: DS 128

See Also
ORG directive (Section 4.29)

Chapter 4: Assembler Directives 2-37

419 DSEG

The DSEG directive sets the current segment to be the data segment (seg id 2). The
assembler saves the current location counter for the old segment, and sets it ta the last
value it had in the data segment. The segment relocatability type may also be specified.
Each DSEG directive must specify the same segment relocatability type.

Format
{label) DSEG [, type-spec]

where type-spec is either PAGE or INPAGE. If the segment relocatability type is not
specified, the relocatability type will be BYTE.

See Also
.SEG directive [Section 4.12),

ASEG directive [Section 4.15),
CSEG directive (Section 4.16)

2-38 B80/AS Assembler Reference Guide

4.20 DW

The DW directive is used to put word values into the object module. The expression
may be absolute, relocatable or external, but all terms must have been defined when the
expression is evaluated in the second pass. The low byte of the word value will go at a
lower address than the high byte of the value.

Format
[label] DW expr([,expr ...]

If more than one expression appears in a DW directive they must be separated by commas.

Example

An 80/PL program needs to use interrupt 3. An interrupt vector must be set up at memory
location 18H (3 *8).

EXTRN INTERRUPTPROCEDURE

ASEG

ORG 18H

DB (JMP INTERRUPTPROCEDURE)
DW INTERRUPTPROCEDURE

(a) The procedure is declared EXTEN so that it becomes defined.

(b) Set the location counter to 18H in the absolute segment, since that is where the
interrupt vector is to go.

(c) Use the DB directive to put the value of the JMP opcode (The operand of the]MP
in the DB directive is needed for correct evaluation of the expression, even though
the value of INTERRUPTPROCEDURE has no eifect on the result).

(d) Putthe address of the interrupt routine using DW {the value of a label or procedure
is its address). The low byte of the address is at 19H, the high byte at 1AH.

Notes

1. The current location counter is incremented after processing each member of the list

of expressions. This means that the value of the “$” term changes from expression
to expression when there is a list of expressions.

See Also
DB directive (Section 4.17)

Chapter 4: Assembler Directives 2-39

4.21 ELSE

The ELSE directive closes the last IF or ELSEIF conditional assembly block, and beging
a new conditional assembly block. If the IF block and every ELSEIF block were ignored,
then the statements within the ELSE block are assembled; otherwise they are ignored.

If the “cond” listing switch is set to no, the ELSE statement is not listed.
Format
[(label] ELSE

Notes
1. The optional label “belongs” ta the preceding IF or ELSEIF block. The label is defined

if and only if the previous block was assembled.

2. The ELSE directive does not normally take an operand, but if the next token after the
ELSE is IF, it is recognized as the ELSEIF directive.

See Also

IF directive (Section 4.27),
ELSEIF directive (Section 4.22),
ENDIF directive (Section 4.24)

2-40 B80/AS Assembler Reference Guide

4.22 ELSEIF

The ELSEIF directive closes the last IF or ELSEIF conditional assembly block, and begins
a new conditional assembly block. This directive requires an expression as its operand.
If the preceding if-block and any preceding elseif-blocks were ignored, and the expression
is logically true (low bit is 1), the code following the ELSEIF directive and continuing to
the matching ELSE, ELSEIF or ENDIF is assembled; otherwise, the lines are ignored. The
expression must be defined when it is first encountered by the assembler — in particular
it may contain no forward references.
If the “cond” listing switch is set to no, the ELSEIF statement is not listed.

Format

[label] ELSEIF expression
Notes
1. The optional label “belongs” to the preceding IF or ELSEIF block. The label is defined
if and only if the previous block was assembled.

2. The directive ELSE, followed by blanks and then the token IF, is recognized as a
variant of ELSEIF.

See Also

IF directive {Section 4.27),
ELSE directive (Section 4.21),
ENDIF directive (Section 4.24)

Chapter 4: Assembler Directives 2-41

4,23 END

The last statement of every 80/AS program must be the END directive. If the program is
a main program, the start address must appear in the operand field of the statement. If
the operand field is blank, the module will be a subprogram with no start address.

Format
[label] END [start-expr}

Example
A main program is to start at the label “BEGIN™:

END BEGIN

2-42 80/AS Assembler Reference Guide

4.24 ENDIF
The ENDIF directive terminates the current conditional assembly block.

Format
[label] ENDIF

Notes

1. The optional label “belongs” to the preceding IF, ELSEIF or ELSE block. The label
is defined if and only if the previous block was assembled.
See Also

IF directive (Section 4.27),
ELSEIF directive {Section 4.22),
ELSE directive (Section 4.21)

Chapter 4: Assembler Directives 2-43

4.25 EQU

The EQU directive defines a symbol and assigns it a 16-bit value. Symbols defined with
EQU may not be redefined later in the program, and they must not have been previously
defined (compare with SET, Section 4.31).

Because of the two-pass structure of 80/AS, limited forward referencing is possible;
that is, the expression may contain symbols whose definition appears later in the pro-
gram. When a symbol assignment is encountered in the first pass of the assembler, the
expression is evaluated, and if each term is defined, the result is placed in the dictionary
entry for the symbol. If, in the second pass, the expression still contains undefined terms,
an error message is given.

Names may be EQUated to predefined register names.

Format

name EQU expression

Examples

The code fragments below illustrate the forward referencing capabilities and limitations.
The first fragment,

X EQU Y ; defined in second pass (=1)

Y EQU 1 ; defined in first pass

is correct, while

X EQU Y ;: hot defined at end of pass 2
Y EQU A : defined in second pass (=1)
Z EQU 1 : defined in first pass

leaves X undefined.
Other possible EQU statements:

ACCUM EQU A ; provide another name for reg A
BUFFER: DS 128
BUFSIZ EQU $-BUFFER ; length of buffer in bytes

See Also

SET directive [Section 4.31]

2-44 B80/AS Assembler Reference Guide

4.26 EXTRN

Sometimes it is necessary to reference data or labels within another module. The as-
sembler must be instructed that certain references will not be defined in the current
module, but appear elsewhere. This is done using the EXTRN directive. EXTRN expects
a comma-separated list of symbols as its operand. These symbols are installed in the
dictionary and defined, so that references to them will not cause errors. Any attempt to
redefine an external symbol is an error.

Format

[label] EXTEN namel[, name2 ... |}

See Also
PUBLIC directive (Section 4.30)

Chapter 4: Assembler Directives 2-45

4.27 IF

The IF directive begins a conditional assembly block. This directive requires an expres-
sion ag its operand; If the expression is logically true (low bit is 1], the code following the
IF directive and continuing to the matching ELSE, ELSEIF or ENDIF is assembled; other-
wise, the lines are ignored. The expression must be defined when it is first encountered
by the assembler - in particular it may contain no forward references.

An IF directive may appear within another conditional assembly block; The condi-
tional assembly mechanism can recurse up to 8 levels deep. Of course, if the outer
conditional block is not being assembled, all inner blacks will be ignored. The lines will
only be scanned to find the matching ENDIF.

If the “cond” listing switch is set to no, the IF statement is not listed.
Format
[label} IF expression

See Also

ELSEIF directive (Section 4.22),
ELSE directive (Section 4.21),
ENDIF directive (Section 4.24)

2-46 B80/AS Assembler Reference Guide

4.28 NAME

The NAME directive allows the programmer to give the object module a name. If no
module name is specified by the programmer, the object module is given the default
name of “MODULE".

Format
[label] NAME module-name

Example

NAME TEST@44

makes “TEST@44” the module name.
Notes
1. 80/LINK will complain if more than on of its input object modules has the same

name, so the NAME directive should be used whenever multiple modules assembled
by 80/AS are to be linked together.

Chapter 4: Assembler Directives 2-47

4.29 ORG

The ORG directive is used to change the current location counter. The operand field of the
ORG contains an expression whose value becomes the new value of the location counter.
The expression must be either absolute or relocatable within the current segment, and
must be completely defined when it is first encountered in pass one.

Format

[label] ORG loc-expression

Examples

ORG $+100H ; current loc ctr + 256
would increment the current location counter by 256, and

ORG 3680H

sets the location counter to 3680H, regardless of its previous value.
Notes

1. If the statement is labelled, the symbol in the label field is assigned the current
address before changing the location counter.

2. The assembler does not check for multiple initialization of memory, so that setting

the location counter to a lower address may cause errors that the assembler cannot
detect.

See Also
DS directive (Section 4.18)

2-48 80/AS Assembler Reference Guide

4,30 PUBLIC

When other modules will reference symbols defined in the current module, the linker
must know the value of the symbol so the references can be resolved. The PUBLIC
directive tells the assembler to put the name and value (at the end of pass 2) of each
symbol in its comma-separated operand list into the object module. The appearance of
a symbol in the PUBLIC statement does not constitute a definition; the symbol must be
defined with a SET or EQU directive or by its use as a label.

Macros and register symbols may not be made public.
Format
[label] PUBLIC namel [, name2 ...]

See Also
EXTRN directive (Section 4.26)

Chapter 4: Assembler Directives 2-49

4.31 SET

The SET directive defines a symbol and assigns it a 18-bit value. Symbols defined with
SET may be redefined later in the program, using another SET directive (compare with
EQU, Section 4.25).

Because of the two-pass structure of 80/AS, limited forward referencing is possible;
that is, the expression may contain symbols whose definition appears later in the pro-
gram. When a symbol assignment is encountered in the first pass of the assembler, the
expression is evzluated, and if each term is defined, the result is placed in the dictionary

entry for the symbol. If, in the second pass, the expression still contains undefined terms,
an error message is given.

Names may be SET to predefined register names.
Format

name SET expression

See Also
EQU directive (Section 4.25)

2-50 B0/AS Assembler Reference Guide

4.32 STKLN

The STKLN directive sets the size of the stack segment in the object module. If a program
uses CALL or PUSH instructions, it will need to use the stack. One way to tell the linker
how much space the program needs on the stack is the STKLN directive. Its operand,
which must be an expression that evaluates to an absolute number, is the number of
bytes that will be allocated in the stack segment for this module.

Format
[label] STKLN expression
Notes

1. If many modules are to be linked together, only one of them need specify a stack

length.

2. It is also possible to instruct 80/LOC to allocate a stack segment of the required size.
In this case no STKLN statement is necessary.

5. Macros

A macro (in the 80/AS language) is a piece of text that is stored in the assembler's
dictionary. The appearance of the name of the macro in the operation field of a statement
(the “macro invocation” or “macro call”) instructs the assembler to insert the entire text
of the macro in place of the macro invocation statement. When the macro is defined it
is possible to specify certain symbols that will be replaced by arguments that are given
when the macro is called. This allows macros to act like subroutines, except that the
code is expanded inline, resulting in faster execution at the expense of larger code size.

Macro definition and expansion takes place before the assembler performs its normal
processing of the input line, so that the assembler proper is presented with a modified

version of the source program. This has several implications for the programmer using
the macro features of 80/AS:

¢ The macro processor “knows” only enough about the 80/AS language to allow it
to recognize keywords and directives relevant to macros.

® The contents of the macro are ignored by the assembler during definition. Control

lines such as “.INCLUDE” directives will not be processed when the macro is
defined

If a macro contains another macro definition, the inner macro will not become
defined until the enclosing macro is expanded. (Even though the macro processor
defines macros, the assembler must see the definition line in order to tell the
macro processor to begin a definition.)

The directives recognized by the macro processor are:

MACRO begins a macro definition (Section 5.1)

ENDM ends a macro definition [Section 5.2]

REPT begins a repeat block (Section 3.5)

IRP begins an indefinite repeat block [Section 5.8)

IRPC begins an indefinite repeat character block (Section 5.7)

LOCAL instructs the macro processor to create unique names for symbols in the

operand field so that repeated invocations of the macro do not cause multiple
definition errors (Section 5.4)

Each of these directives is discussed individually below.

2-52 80/AS Assembler Reference Guide

5.1 THE MACRO DIRECTIVE

A macro definition begins with the MACRO directive. This statement gives the macro its

name, and tells which symbols should be replaced by actual arguments when the macro
is expanded.

name MACRO [argl[, arg2, ...]]

5.1.1 The Macro Name

The label field of the statement must contain a name, which becomes the name of the
macro. This name is used later to invoke the macro and cause its expansion. If the
name already represents a macro, the old definition is deleted before the new definition
is installed. It is an error to attempt to redefine a non-macro as a macro.

The statement
MAC1 MACRO

defines a macro with the name MAC1, whose definition begins with the following
statement.

5.1.2 Formal Macro Parameters

The operand field of the statement contains a comma-separated list of symbols that are
the formal parameters of the macro. During macro definition, if a symbol matching any of
the formal parameters is encountered, its position in the stored code skeleton is marked
for replacement by an argument of the macro when expanded.

The statement
MAC2 MACRO XX, YY

defines the macro MAC2. Each occurrence of the tokens XX or YY within the definition

will be replaced with a text string that is supplied when the macro is invoked for
expansion.

Symbols that have special significance to the assembler, such as register names and
instruction mnemonics, may be used as formal parameters, but since they will be replaced
by actual arguments when the macro is expanded, they cannot be used in their normal
way. For instance, if A is a formal parameter, the statement

MVI A, 10

will not cause the value 10 to be loaded into the accumulator (unless, of course, the
argument substituted for A is itself A].

Chapter 5: Macros 2-53

5.1.2.1 Forcing Recognition of Macro Parameters

Normally, formal parameters within the macro body will not be recognized unless they
have the appearance of tokens; they must generally be separated from adjacent tokens
by commas, non-alphanumeric operators or white space. Sometimes it is desirable to
force recognition of a formal parameter when it is directly adjacent to another token, so
that when the parameter is expanded it will make up only part of the resulting token.
The character ‘&’ is treated by the macro processor as a special kind of delimiter. H it
immediately precedes or follows a formal parameter, the parameter is recognized, and
the ‘&’ is removed upon expansion.

For example,

MAC1 MACRO XX, YY

DB XXYY
DB XX&YY
ENDM

MAC1 1, 2
will expand into

DB XXYY
bs 12

Formal parameters within quoted strings will not be recognized unless adjacent to an ‘&’.
Likewise, any ‘&’ within a quoted string will not be removed unless directly adjacent to a
formal parameter. If X is a formal parameter, the X in ‘one X two’ will not be recognized,
but the X in ‘three &X four’ will.

When two or more ampersands are adjacent to a formal parameter, or separate two
formal parameters, only one is removed when the macro is defined.

5.2 THE ENDM DIRECTIVE

The ENDM directive terminates the matching MACRO, REPT, IRP, or IRPC block. For
the REPT, IRP, and IRPC cases, it also causes expansion of the block.

ENDM

The ENDM directive may not be labelled, since the line containing the directive is not a
part of the macro body. If a label is desired at the end of the macro, put it on a line by
itself, immediately preceding the ENDM statement.

5.3 MACRO EXPANSION

A macro that has been previously defined is expanded when its name appears in the

operation field of an instruction. Any arguments follow in the operand field, separated
by commas.

[label] name [argl{, arg2, ...1]

2-54 B80/AS Assembler Reference Guide

Each instance of the first formal parameter will be replaced with argl, etc. If there are
more arguments than formal parameters, they will be ignored. Any formal parameters
that have no corresponding arguments will be set to null. A null argument is invisible
to the assembler and takes up no space; it will not be a token separator.

5.3.1 Macro Arguments

The simplest form of argument is a string of characters which have no special meaning
to the macro processor. The string is substituted directly for each occurrence of the
corresponding formal parameter.

It is often necessary to include within an argument characters, such as blanks or
commas, that the macro processor would recognize as token delimiters. Therefore, the
macro processor has two different kinds of escape mechanism.

A single character may be escaped by preceding it with an ‘V’. Any character (includ-
ing another ‘') except a newline may be so escaped. The ‘¥ is discarded when the
argument is expanded, except when it is being used in an argument to a nested macro
call, in which case it is kept.

Alternatively, an entire string of characters may be protected from the macre proces-
sor by enclosing them in angle brackets ‘<’ and ‘>’. If the argument begins with an ‘<,
the rest of the argument is scanned for the matching ‘>’, and all the text between the
angle brackets is treated as a single argument. Note that the outermost pair of brackets

are removed, so that if the argument is to be used as the argument to another macro call,
two sets of enclosing brackets will be needed.

A null macro argument that is followed by non-null arguments must sometimes be
specified. This may be done either by using a quoted string that is empty () as the

argument, or by omitting the argument entirely (the preceding and following commas are
adjacent).

As an example of macro argument interpretation, assume that the macro BIGMAC
was defined with the five parameters A, B, C, D, and E. Then the invocation

BIGMAC ,cheese, '', < tomato, mustard>, no! onions!!

would result in the following argument substitutions:

A =] (note the leading comma)

B = [cheese]

c = 1 (empty string)

D = [tomato, mustard] (leading blank, comma protected)
E = [no onions!] (escaped space and !)

Occasionally it is necessary to pass the value represented by a text string (defined by
SET or EQU) rather than the string itself. This is done by prefixing the argument with
the ‘%’ immediate evaluation character.

For example,

Chapter 5: Macros 2-55

MAC1 MACRO XX, YY

DATE SET 1984
DW h.0.4
Dw YY
ENDM

DATE SET 2001

MAC1 DATE, %DATE

will expand into

DATE SET 1084
DW DATE (argument passed is DATE)
DW 2001 (argument passed is 2001)

5.4 THE LOCAL DIRECTIVE

The LOCAL directive is used when a macro is being defined to specify one or more
symbols that are to be replaced with generated names upon expansion. Each time the
macro is expanded, 2 different generated name is used.

LOCAL namel[, name2, ...]

The LOCAL directive(s) must immediately follow the statement beginning the macro
definition block (MACROQ, IRP, IRPC, or REPT directive]. More than one LOCAL directive

may be used, as long as they are all at the beginning of the macro. The LOCAL directive
may not be labelled.

Any time label definitions or EQU directives appear within a macro that will be
expanded more than once, the LOCAL directive will need to be used. Otherwige, all
expansions after the first will cause multiple definition of symbols.

The assembler generates replacement names of the form “??annn”, where nnnn is

0000, 0001, 0002, etc. The programmer should therefore avoid using symbols of that
form.

5.5 THE REPT DIRECTIVE

The REPT directive begins a macro definition that is also an implicit request for expan-
sion. The operand field of the REPT statement contains a number or absolute expression
that indicates the number of times that the macro should be expanded. Since the expan-

sion call is implicit in the definition, no name is needed, and parameters are not allowed
with the REPT directive.

[label] REPT expr

For example, the REPT block

2-56 B80/AS Assembler Reference Guide

REPT 3
RAR
ENDM
would generate the following instructions:

RAR
RAR
RAR

If the value in the operand field is 0 or no operand is present, no text is generated from
the REPT block.

5.6 THE IRP DIRECTIVE

The IRP directive, like the REPT directive, begins a definition that is also an expansion.

[label] IRP param, <list>

Each occurrence of param within the body of the macro is replaced by a member of the
argument list; one expansion of the macro is generated for each member. The (possibly
empty) list is composed of a comma-separated list of text strings enclosed within angle
brackets, which are treated exactly like arguments to a macro call (see Section 5.3.1). If

the list is empty, a single expansion is generated, with the formal parameter replaced by
a null argument.

If the source statements are:

IRP XX,<'declare', 'some', 'strings'>
DB XX
ENDM

the macro processor would generate

DB 'declare’
DB 'some’
DB 'strings’

Note that the quotes are preserved upon expansion, as long as the string is not empty.

5.7 THE IRPC DIRECTIVE

The IRPC directive also begins a definition that is an implicit call for expansion.

[label] IRPC param [, text]

The text argument is a sequence of characters, and if enclosed in angle brackets may
contain delimiters such as blanks. The dummy parameter param is replaced by a single
character from text, each character causing another expansion of the IRPC block. 1f the
list is empty, a single expansion is generated, with the formal parameter replaced by a
null argument. If the substitution string begins with %, the entire string is evaluated and

Chapter 5: Macros 2-57

the decimal representation of its value is used, one character at a time, to repeatedly
expand the body of the IRPC block.

For example

IRPC Yy, 123
DB YY
ENDM

would expand into

DB 1
DB 2
DB 3

5.8 THE EXITM DIRECTIVE

-The EXITM directive causes the MACRO, REPT, IRP or IRPC block currently being

expanded to be exited. It is typically used after an IF conditional assembly directive
to terminate expansion in an error case.

For example

IF COUNT GT 100H

.PRINT 1,'Won''t fit on one page'
EXITM

ENDIF

would cause termination of the current expansion if COUNT was greater than 256. An
error code with severity 1 would also be issued — see Section 4.9 for a more complete
discussion of the .PRINT directive.

5.9 MACRO EXAMPLES

This section presents two longer examples of the use of macros in the 80/AS assembler.

5.9.1 Generated Symbols Example

The following example shows the use of the LOCAL directive to create non-conflicting
labels. The macro is a simple timing loop, which may be invoked many times. If the
loop label was not made local to the expansion, all expansions after the first would cause
multiple definition errors.

ioc obj seq text
- 1 wait macro howlong
- 2 local loopxx
- 3 mvi a, howlong
- 4 loopxx: der a
- 5 jnz loopxx
- 8 endm
ki wait 250
0000 3efa + B mvi a, 250
o002z 3d + 9 770001: der a
0003 c20200 + 10 jnz 770001
11 wait ki

0006 3e4b + 12 mvi a, 75

2-58 B80/AS Assembler Reference Guide

0008 3d + 13 ?70002: der a
0009 ¢20800 + 14 inz 770002
15 end

5.9.2 Argument Quoting Example

This example illustrates macro argument quoting mechanisms. Two macros, quote and
quote2, are defined and then invoked with varicus quoted and escaped arguments. Quote
invokes quote2 and passes its arguments to the nested expansion. Compare sequence
line 13 — the original invocation — with sequence line 17, which is the nested macro
invocation. Things to note are:

1. The ampersands adjacent to the arguments within quoted strings are necessary
to force recognition of the arguments. No substitution takes place for ‘argl’ (line
11).

2. One set of angle brackets ‘<...>’ is stripped off for each level of evaluation
(compare argl evaluation).

3. The escape character ‘!’ is not discarded when the argument being substituted is
itself an argument to a nested macro call (compare arg2 and arg3 evaluation).

loc obj seq text
- 1 quote BACY O argl, arg2, arg3d
- 2 db ‘&argl’
- 3 db ‘karg2!
- 4 db 'karg3’
- 5 quote2 argl, arg2, args
- [} endm
- T quote2 macro argl, arg2, arg3d
- 8 db ‘Rargl!
- a db ‘&arg2!
- 10 db 'gargl!’
- 11 db targl®
- 12 endm
13 quote << 25>, 1< 2>, 11 21!
0000 3¢312032 + 14 db <1 2>
0004 3e +
0005 3c312032 + 15 db gl 2>
(0009 3e +
000a 31203221 + 18 db 1 2t
+ 17 quotez <1 2>, 1<1! 2t>, 1! 21!
000e 312032 + 18 db 12!
0011 3¢312032 + 19 db <1 2>
0015 3e +
0016 31203221 + 20 db o2
00la 61726731 + 21 db 'argl’
22 end

A. Error Messages

Following is a list of the error messages that may be produced, grouped by severity. For
a discussion of return codes, see Section 2.2 and Section 2.4.

A.1 WARNINGS

Warnings are generated by 80/AS when a potential error has been encountered, even
though an unambiguous and probably correct choice of actions is made.

e CAN'T LABEL THIS STATEMENT - A MACRO, EQU, or SET directive has been
labelled. The label is assigned the current location and segment.

& END FOUND WHILE SKIPPING — The END directive was encountered while
skipping lines from a false branch of a conditiona! assembly construct. All
conditional blocks are closed and the END statement is processed.

A.2 ERRORS

Errors are generated by BO/AS when a statement contains one or more errors that are
serious enough that the assembler cannot continue processing the statement. If an error
of this type is encountered within a statement that appears to be an instruction (e.g.
an undefined expression as the target of a CALL opcode), three bytes of NOP will be
generated, allowing the programmer to patch the program at execution time.

e BAD BRANCH TARGET (DIFFERENT SEG) — The target of a short relative jump
{(Z80 instructions JR, JRC,JRNC, JRZ, and JRNZ) lies in anather segment.

¢ BAD BRANCH TARGET (TOQ FAR) — The target of a short relative jump (Z80
instructions JR, JRC,JRNC, JRZ, and JRNZ) is too far from the instruction {range -
128 to +127 bytes).

e CAN'T CHANGE RELOCATABILITY TYPE - A .SEG, CSEG, or DSEG directive
was seen that specified a relocatability (blank (BYTE), PAGE, or INPAGE) dif-
ferent from the relocatability already assigned to that segment.

¢ CAN'T ESCAPE A NEWLINE ~ A newline character (ASCII 10) followed the
macro escape character “!”. A blank was inserted after the escape character.

¢ CAN'T LOCATE INCLUDE FILE: (file} — The specified include file could not be
found {or was not readable).

¢ COMMA EXPECTED - A comma was expected but not found at some point in
the statement.

2-60 80/AS Assembler Reference Guide

® CONSTANT OVERFLOW — When collecting a constant, its absolute value became
greater than 65,535. Its value is the first N digits such that the first N+1 digits
cause overflow.

e CONTROL STACK OVERFLOW — Too many .SAVE directives were used without
intervening .RESTOREs. The directive is ignored.

® CONTROL STACK UNDERFLOW — More .RESTORE directives than .SAVE direc-
tives were encountered. The directive is ignored.

e DS EXPRESSION MUST BE ABSOLUTE — The expression in a DS directive was
not an absplute value. The absolute part of the expression value is used.

¢ END OF LINE EXPECTED - After processing the statement, there was still some-
thing [other than a comment) left to scan.

® ENDM SYNTAX — The ENDM directive was not the first thing on the line (ENDM
cannot be labelled).

¢ EXPRESSION MUST EVALUATE TO A BYTE — An expression whose value was
outside the range -256 (OFF00H) to +255 (0FFH) was encountered in a context
where a byte value was required. The high byte of the value is set to 0, giving a
result in the range 0 to +255.

e EXPRESSION SYNTAX, OPERAND EXPECTED — An ill-formed expression was
encountered. The value of the missing term is set to absolute 0.

e EXTERNAL NAME EXPECTED - Either no name followed an EXTRN directive,
or the name was already defined.

o ILLEGAL CHARACTER — An ASCII control character (value < 32) other than
a tab, or a printable ASCII character not recognized by 80/AS was found while
scanning the input line. The character is discarded.

¢ ILLEGAL CHARACTER IN QUOTED STRING — An ASCII control character (value
< 32) other than a tab was found in a quoted string. The character is discarded.

¢ ILLEGAL PUBLIC DECLARATION — A symbol name did not follow the PUBLIC
directive.

® ILLEGAL PUBLIC REGISTER - Either a register name appeared in a PUBLIC
directive, or a public name appeared as the target of a SET or EQU to a register
name. The public attribute is removed, and the register type is retained.

e [LLEGAL REGISTER - A register or register pair was used as the operand of an
ingtruction that could not reference that register or register pair (e.g. PUSH C).

e ILLEGAL USE OF A REGISTER — A register name appeared as an operand in an
expression. The value of the term is set to absolute 0.

e INCLUDE FILE NAME OVERFLOW - An internal buffer overflowed when con-
structing an include file name from the string specified in an .INCLUDE directive
and a default or user-supplied directory path. The directive is ignored.

e INCLUDE FILE STRING EXPECTED - A quoted string did not follow the
INCLUDE directive. The directive is ignored.

o INVALID BASE SPECIFIED FOR CONSTANT — The terminal character of a
numeric token was not a valid base specifier {one of B, D, H, O, Q). The value
of the number is set to 0.

Appendix A: Error Messages 2-61

INVALID EXPRESSION IN ORG STATEMENT — The expression following the
ORG directive has a relocatability that is not the same as the current segment.
The expression relocatability is assumed to be that of the current segment.
INVALID NUMERIC CONSTANT — BAD DIGIT —~ A character that is not a digit
was found while scanning a number. The digits preceding the invalid character
are used to determine the number’s value.

INVALID NUMERIC CONSTANT - DIGIT TOO LARGE ~ A digit that is not in
the set of allowable digits for the given base was found while scanning a number.
The digits preceding the invalid digit are used to determine the number’s value.
INVALID RELOCATABILITY TYPE — The segment relocatability type in a .SEG,
CSEG, or DSEG directive is not one of PAGE, INPAGE, or blank (BYTE). The
relocatability type is assumed to be BYTE,

IRP REQUIRES A BRACKETED ARGUMENT LIST — An IRP macro directive did
not have a bracketed argument list following the formal parameter and comma
separator. The list is assumed to be null.

LABEL ALREADY DEFINED - A label was encountered that had been previously
defined. The symbol retains its initial value and relocatability.

MISPLACED ELSE DIRECTIVE — An ELSE directive appeared when not within
any conditional assembly block, or after another ELSE directive.

MISPLACED ELSEIF DIRECTIVE - An ELSEIF directive appeared when not
within any conditional assembly block, or after an ELSE directive.

MISPLACED ENDIF DIRECTIVE — An ENDIF directive appeared when not within
any conditional assembly block.

MISPLACED ENDM DIRECTIVE — An ENDM directive appeared when not defin-
ing any macro.

MISPLACED EXITM DIRECTIVE — An EXITM directive appeared when not ex-
panding any macro.

MISPLACED LOCAL DIRECTIVE - A LOCAL directive appeared that did not
immediately follow a MACRO, IRP, REPT, or IRPC directive.

MISSING END DIRECTIVE — The end of the primary source file was encountered
before the END directive was seen. A generated END directive is appended to
the input file.

MULTIPLE NAME DIRECTIVES — More than one NAME directive was found.
The module name is specified by the first NAME directive encountered.

NO 8080 TRANSLATIONS FOR DADC OR DSBB — A DADC or DSBB Z80 in-
struction was encountered with the -z {map Z80 to 8080) option in effect. There
are no single-instruction 8080 equivalents for the word add and subtract Z80 ops.

NO MODULE NAME FOLLOWING NAME DIRECTIVE — The module will have
the default name “MODULE".

NO NAME WITH EQU DIRECTIVE — An EQU directive had no name in the label
field.

NO NAME WITH MACRO DIRECTIVE — A MACRO directive had no name in the
label field. The definition is processed and then discarded.

NO NAME WITH SET DIRECTIVE - A SET directive had no name in the label
field.

2-62 80/AS Assembler Reference Guide

PRINT STRING EXPECTED - No string was found following a .PRINT directive.

PUBLIC SYMBOQL IS NOT DEFINED — A symbol specified in a PUBLIC directive
did not appear in any definition context. The symbol will not appear in a PUBLIC
record in the object output.

PUBLICS NOT ALLOWED WITHIN COMMON - A symbol that has the public
attribute was defined to have a relocatability of one of the common segments, or
a symbol whose relocatability is that of one of the common segments appeared
in a PUBLIC directive. The PUBLIC attribute is removed.

REGISTER OPERAND REQUIRED — No register name was found where one was
expected as an instruction operand.

RELOCATION ERROR IN EXPRESSION — An expression contains one or more
terms that have relocatabilities incompatible with each other or with the aperator.
The term in error is given the value of absolute 0.

RIGHT PARENTHESIS EXPECTED — A parenthesized expression is missing one
or more right parentheses.

RST VALUE MUST BE BETWEEN 0 AND 7 — The RST instruction was either not
followed by a number, or the value was outside the range ¢ - 7.

SEGMENT ADDRESS WRAPAROUND - The location counter for a segment has
gone past 65,535 {(OFFFFH). The next address will be location 0.

SEGMENT NAME EXPECTED — An invalid segment name was found lollowing
the .SEG directive.

STKLN EXPRESSION MUST BE ABSOLUTE — The expression in a STKLN direc-
tive was not an absolute value. The absolute part of the expression value is used.
STRING CAN'T REPRESENT A VALUE — A string more than two characters long
was found where a number was required. The string is taken to have a value of
0.

STRING TOO LONG — A string longer than 255 characters was found. The excess
characters are truncated.

SYMBOL ALREADY DEFINED - The target of an EQU was already defined, or
the target of a SET was already defined other than with a SET directive. The
previous definition remains in effect.

SYMBOL ALREADY DEFINED AS A NON-MACRO — An attempt was made to
define a macro whose name was already defined as a non-macro symbol. The
macro definition is scanned and then discarded.

SYMBOL EXPECTED - A symbol was expected but not found following a
MACRO, LOCAL, IRP, or IRPC directive.

TITLE OR SUBTITLE STRING EXPECTED — No string was found following a
.TITLE or .SUBTITLE directive.

TOKEN TOO LONG — A token (other than a quoted string) was found that was
longer than 31 characters. The token is truncated to the first 31 characters.

TOO MANY SEGMENTS — More than 249 named common segments were defined
with SEG directives. Excess segment definition directives are ignored.

UNBALANCED BRACKETS — A newline was found while processing a bracketed
macro argument. Indicates one or more missing closing angle brackets (>).

Moae”

Appendix A: Error Messages 2-63

® UNCLOSED STRING - The end of the input line was encountered while scanning
a quoted string. The string is terminated as if there had been a closing quote,

¢ UNDEFINED EXPRESSION — An undefined expression was found where a
defined expression was required. The expression is given the value of absolute
0.

¢ UNDEFINED EXPRESSION IN SYMBOL ASSIGNMENT — An undefined expres-
sion was found as the operand of a SET or EQU directive in pass 2. The symbol
is given the value of absolute 0.

¢ UNKNOWN OPCODE -~ The coperation field of a statement does not contain a
recognizable directive, instruction mnemonic, or macro name.

A.3 SEVERE ERRORS

These errors are the most severe errors that the user should encounter in normal
operation. Severe errors are errors from which the assembler cannot recover, and they
cause immediate termination of the current assembly. These errors fall into two general
classes. They may be caused by some dynamic or static space overflow within the as-
sembler, and the solution is to reduce the size and/or complexity of the program. Or,
they may indicate some problem with the environment within which 80/AS runs. IO

errors generally fall into this category.

Messages assoclated with system errors will generally have an associated reason

message indicating the type of problem encountered (i.e. “File table overflow”, “No
space left on device™).

e CAN'T GENERATE UNIQUE FILE NAME: (pattern) — 80/AS generates temporary
file names using the process id and any one of the lowercase letters. None of
these names could be used because all the files already existed.

e CREATING FILE MIGHT ERASE SOURCE FILE: {file} - The specified file was
not created because its name matched the source file name.

e DICTIONARY OVERFLOW — The assembler's dictionary has overflowed. Too
many symbols have been defined.

e DYNAMIC MEMORY OVERFLOW — There is not enough memory for the as-
sembly. This can happen if there are a large number of macros defined, and/or
many include files are open at the same time.

¢ EXPRESSION STACK OVERFLOW — Too many partial results have been pushed
on the expression stack. Simplify the expression.

e IF STACK OVERFLOW — The conditional assembly stack has overflowed. Reduce
nesting of conditional assembly blocks.

® INPUT STACK OVERFLOW - The macro processor’s input stack has overflowed.
There are too many nested macro expansions and open include files.

® 1/O ERROR ON CLOSE: {reason) ~ A system /O error occurred when closing a
file.

& 1/0 ERROR ON OPEN: {file}: (reason} — A system I/O error occurred when opening
the specified file.

¢ I/O ERROR ON READ: {reason} ~ A system IO error occurred when reading a
file.

2-64 80/AS Assembler Reference Guide

¢ [/O ERROR ON SEEK: {reason) — A system /O error accurred when seeking in a
file.

e 10 ERROR ON WRITE: {reason} ~ A system I/O error occurred when writing a
file.

e MISSING NUMERIC ARGUMENT - An invocation option that required a numeric
value to follow was specified without the value.

¢ NOTHING REMAINS AFTER STRIPPING THE SUFFIX: {file) — An input file had
only an extension.

® SORT FAILED — The sort program returned a non-zero status.

¢ TOO MANY INCLUDE DIRECTORIES — The list of include directories given with
the -I invocation option has averflowed an internal buifer. Reduce the number
or length of the include directories specified.

e TOO MANY MACRO PARAMETERS - When defining a macro the macro
parameter stack overflowed. Reduce the number of formal parameters in the
definition.

¢ TOO MANY OPEN FILES - The I/O processor’s file table filled up. Reduce the
number of nested include files.

A.4 FATAL ERRORS
Fatal errors indicate an internal 80/AS failure. They should never be encountered by the
user.

e ASSEMBLER FAILURE - {message} — All internal errors are of this form. The
associated message indicates the particular mode of failure.

B. Glossary of Directives

Following is a list of 80/AS assembler directives and their formats. For a more complete

discussion of each, along with some examples, see the chapter on directives, Chapter 4
.and the chapter on macros, Chapter 5.

[label]

[1abel]

[label]

[label}

[label]

[label]

[labell]

[label]

[label]

flabel]

[label]

. COND

List lines that were ignored because of a conditional assembly direc-
tive.

. EJECT

Generate an eject in the listing.

. GEN

List macro expansions.

. INCLUDE ‘file-name'

Include the file file-name.

.LIST

Enable listing.

. NOCOND

Do not list lines that were ignored because of a conditional assembly
directive.

. NOGEN

Do not list macro expansions.

.NOLIST

Disable all listing.

.PRINT expression, 'message!'

Signal an error of severity expression, and add message to the error
log and listing.

. RESTORE

Restore saved listing controls.

. SAVE

Save listing controls.

2-66 80/AS Assembler Reference Guide

[label]

[label]

[label}

[label]

[label]

[label]

[label]

[label]

[label]

[label}

[1abel]

[label]

{label}

name

[1abel]

. SEG seg-name [, type-spec]

Set the current segment to the STACK, MEMORY, or common seg-
ment seg-name. A seg-name of // indicates the unnamed common
segment. The relocatability will be BYTE unless either PAGE or
INPAGE is given as the type-spec.

. SUBTITLE ‘subtitle-string!
Set the current subtitle to subtitle-string.
. TITLE ‘title-string'
Set the current title to title-siring.
ASEG
Set the current segment to the absolute segment.
CSEG [, type-spec]

Set the current segment to the code segment. The relocatability will
be BYTE unless either PAGE or INPAGE is given as the type-spec.

DB expr-or-string [,expr-or-string ...]
Initialize data with byte values and/or quoted strings.
DS expr
Reserve expr bytes starting at the current location.
DSEG [, type-spec]

Set the current segment to the data segment. The relocatability will
be BYTE unless either PAGE or INPAGE is given as the type-spec.

Dw expr[,expr ...]

Initialize data with word values.
ELSE

Begin else clause of conditional assembly block.
ELSEIF expression

Begin elseif clause of conditional assembly block.
END [start-expr]

Indicates end of source program. If start-expr is present, module is
a main program with given start address.

ENDIF
End conditional assembly block.
ENDM
End a macro, rept, irp, or irpc definition.
EQU expression
Define symbol name to have value expression.
EXITM
Terminate expansion of the current macro, rept, irp, or irpc block.

[label]

[label]

[label]

[label]}

[label]

[label]

[label]

[label)

name

[label]

Appendix B: Glossory of Directives 2-67

EXTRN namel [, name2 ...]

Define the symbols name1, ... to be external.
IF expression

Begin if clause of conditional assembly block.
IRP param, <list>

Define and expand an indefinite repeat block with formal parameter
param and actual arguments supplied by the (possibly empty) com-
ma-separated list elements.

IRPC param [, text]

Define and expand an indefinite repeat (character) block with for-
mal parameter param and actual arguments supplied by successive
characters from text.

LOCAL namel [, ...]

Within a macro block, define the symbols namei, ... to be local
symbols, causing the assembler to replace each instance of the name
with a unique generated name.

MACRO [paraml, ...]

Begin a macro definition whose name is name, with formal
parameters paraml,

NAME module-name

Give the object module the name module-name.
ORG loc-expression

Set the location counter to loc-expression.
PUBLIC hamel([, name2 ...]

Give the symbols namei, ... the public attribute, causing PUBDEF
records to be generated.

REPT count
Define a repeat block with a repeat count of count.
SET expression

Define symbol name te have value expression. The symbol may be
redefined with another SET directive.

STKLN expression
Set the size of the stack segment to expression bytes.

Index

! as a macro argument escape character 54
% as macro argument immediate evaluation character 54
& as macro parameter delimiter 53

- as binary subtraction operator 15
-B invocation option 5
-¢ option 3

-d option 3

-f option 3

-g option 3

-1 option 4

-1 option 4

-m option 4

-n option 4

-p option 4

-s option 4

-w option 4

-x option 4

-XI invocation option 5
-Xo invocation option 5
-Xs invocation option §
-Xt invocation option 5
-Z option 4

.COND directive 19
.EJECT directive 20
.GEN directive 21
JINCLUDE directive 22
.LIST directive 23
.NOCOND directive 24
NOGEN directive 25
NOLIST directive 26
.PRINT directive 27

.q as object file suffix 3
.RESTORE directive 28
.SAVE directive 29
.SEG directive 30

2-70 80/AS Assembler Reference Guide

.SUBTITLE directive 31
.TITLE directive 32

{ as division operator 15

{/ as unnamed common segment name 30
/CROSS_REFERENCE qualifier 7
/DEBUG qualifier 7

/IGNORE_Z80 qualifier 8
/INCLUDES qualifier 8

/LENGTH qualifier 8

/LIST qualifier 8

MAP_Z80 qualifier 8
/NOCROSS_REFERENCE qualifier 7
/NODEBUG qualifier 7
/NOIGNORE_Z380 qualifier 8
/NOLIST qualifier 8

NOMAP_Z80 qualifier 8
/NOOBJECT qualifier 8
MNOSHORT_NAMES qualifier 9
/OBJECT qualifier 8
/SHORT_NAMES qualifier 9
/SHOW qualifier 8

fWIDTH qualifier 9

BO/AS compared with Intel 8080/8085 Assembly Language 1
80/AS Syntax 11
80/PC invocation 7

: as label terminator 11

< as a macro argument quoting character 54
> as a macro argument quoting character 54
* as multiplication operator 15

+ as binary addition operator 15

+ as unary plus operator 15

- as unary negation operator 15

; as comment character 12

AS80 file type 7

Absolute segment, access to 33
Addition operator, binary {(+) 15
And operator {AND) 14

Argument concatenation 5
Argument files 5

Argument format 5

Argument in a macro expansion 54
Argument substitution in macro expansion 53
Arithmetic operators 15

ASEG directive 33

Binary constants 13
BINARY option 8

Case insensitivity 11

Index 271

Character constants 13

Character set for user symbols 11
Character strings as numeric constants 13
Code segment, access to 34
Comment field 12

Common segments, access to 1, 30
Compatibility mode 4

Compiler invocation 7
Completion status 9

Conditional assembly listing option (-c) 3
Conditional assembly, else 39
Conditional assembly, elseif 40
Conditional assembly, endif 42
Conditional assembly, il 45
CONDITIONALS option 8
Constants 12

Constants, base specifier 13
Created symbols, format 11, 55
Cross reference option (-x) 4
CSEG directive 34

Current location counter 47

Data initialization 35, 38
Data segment, access to 37
Data space allocation 36
DB directive 35

Decimal constants 13
Default file suffixes 5
Division operator (/) 15
DS directive 36

DSEG directive 37

DW directive 38

ELSE directive 39

ELSE TF directive 40

ELSEIF directive 40

END directive 41

ENDIF directive 42

ENDM directive 53

EQU directive 43

Equal operator (EQQ} 15

Error completion status 9
Error levels 6,9

Error messages 59

Error messages, user-generated 27
Errors 59

Exclusive or operator (XOR) 14
Exit status 6, 9

EXITM directive 57
EXPANSIONS option 8
Expressions 14

2-72 80/AS Assembler Reference Guide

External symbols 44
EXTRN directive 44

Fatal error completion status 9

Fatal errors 64

Features and capabilities of 80/AS 1
File naming conventions, object file 3
FORM_FEED qualifier 8

Forward reference 12, 43

Greater than operator (GT) 15
Greater than or equal operator (GE) 15

Hexadecimal constants 13

IF directive 45

Ignore Z80 instructions option (-Z} 4

Immediate expansion of macro arguments 54

Include file alternate search path specilication option {-I) 4
Include files, directory search algorithm 4, 22

Instruction formats 16

Intel 8080/8085 Assembly Language compared with 80/AS 1
Introduction 1

Invocation 3

Invocation options 3, 7

Invoking 80/AS 7

IRP directive 56

IRPC directive 56

Label field 11

Labels 11

Less than operator (LT) 15

Less than or equal operator (LE} 15

LIS file type 7,8

Listing controls, saving and restoring 28, 29

Listing format, disabling page breaks 4

Listing format, enabling listing of macro expansion statements 21
Listing format, ending pages with form feeds 3

Listing format, ending pages with multiple blank lines 3

Listing format, generating a page break 20

Listing format, producing a cross reference 4

Listing format, setting the page length 4

Listing format, setting the page width 4

Listing format, subtitle 31

Listing format, suppressing listing of macro expansion statements 3, 4, 25
Listing format, suppressing unprocessed conditional assembly statements 3, 19, 24
Listing format, title 32

Listing option (-p} 4

Listing, enabling 4, 23, 26

Listings 8

LOCAL directive 55

Local symbols 11

Local symbols records option (-d) 3

Index 2-73

Logical operators 14
Long identifiers 4

Macro call 53

Macro definition 52

MACRO directive 52

Macro expansion 53

Macro expansion listing suppression option (-g} 3
Macro expansion listing suppression option {-m) 4
Macro invocation 53

Macro redefinition 52

Macros 51

Memory segment 30

Memory segment, access to 30

MOD as modulus operator 13

Module name specification 46

Module name, default 46

Modulus operator (MOD) 15

Multiplication operator (*] 15

NAME directive 46

Named common segments 30
Names 12

Negation operator, unary (-) 15
Nested macro definitions 51
NOBINARY option 8
NOCONDITIONALS option 8
NOEXPANSIONS option 8§
NOFORM_FEED qualifier 8
Not equal operator (NE) 15
Not operator (NOT) 14

NUL operator 15

Null arguments 54

Numeric constants 13

Object file name 3

Obiject file suppression option (-n) 4
Object module format 2

Octal constants 13

Opcodes as constants 13-
Operation field 12

Options, invocation 7

Or operator (OR) 14

Order of Evaluation 14

ORG directive 47

Page length option (-I) 4
Parameter in a macro definition 52
Plus operator, unary (+) 15
Precedence 14

PUBLIC directive 48

Q80 file type 7, 8

2-74 80/AS Assembler Beference Guide

Quoted strings 13

Redirecting standard error file 5
Register naming conventions 14
Relational operators 15

REPT directive 55

Restoring saved listing controls 28
Return code 0 — success 6
Return code 1 — warning 6
Return code 2 — error 6

Return code 3 — severe error 6
Return code 4 — fatal error 6
Return codes 6

Saving listing controls 29

SET directive 49

Setting the segment 30, 33, 34, 37
Severe error completion status 9
Severe errors 63

Shift operators 1%

SHL, shift left operator 15

Short identifier option (-s] 4
Short identifiers 4

SHR, shift right operator 15

Stack segment 30

Stack segment, access to 30

Stack segment, setting the size of 50
Standard error file, redirecting 5
Statement syntax 11

STKLN directive 50

String constants 13

Subtitle specification 31
Subtraction operator, binary (-} 15
Success completion status 9
Symbol assignment 43, 49
Symbol, value of 12

Symbols 11

Symbols, length 1

Symbols, scope 1

Syntax of 80/AS 11

Title specification 32
Translate Z80 instructions option (-z) 4

Undefined symbol, value of 12
Uninitialized data allocation 36
Unnamed common segment 30

Value, definition 12

Warning completion status 9
Warnings 59

ZB0 instructions, mapping to 8080 equivalents 4

Index 2-75

Z80 instructions, non-recognition 4
Z80 instructions, recognized subset 1, 4

