the engineering and scientific software series

86/PC
experts—PL/M-86

Using 86/PC in the
Tektronix Environment

Caine, Farber & Warren Point
Gordon, Inc. International Limited

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure of the software described herein is governed by the terms
of a license agreement or, in the absence of an agreement, is subject to restrictions stated
in paragraph (b)(3)(B) of the Rights in Technical Data and Computer Saftware clause in
DAR 7-104,9(a) or in subdivision (b)(3)(ii} of the Rights in Technical Data and Computer
Software clause in FAR 52.227.7013, as applicable,

Comments or questions relating to this manual or to the subject software are welcomed
and should be addressed to:

Caine, Farber & Gordon, Inc. Warren Point International Limited
1010 East Union Street Babbage Road, Stevenage
Pasadena, CA 91106 Hertfordshire SG1 2EQ

USA ENGLAND

Tel: (818) 449-3070 Tel: Stevenage (0438) 316311
Telex: 295316 CFG UR Telex; 826255 DBDS G

ISBN 1-55714-009-X
Order Number: 9301-8

20 June 1984

Copyright © 1984 by Caine, Farber & Gordon, Inc.
All Rights Reserved.

86/PC and 86/PL are trademarks of Caine, Farber & Gordon, Inc. Experts-PL/M and
Experts-PL/M-86 are trademarks of Caine, Farber & Gordon, Inc. and Warren Point
International Limited. UNIX is a trademark of AT&T Bell Laboratories. VAX, VMS,
and Ultrix are trademarks of Digital Equipment Corporation. TNIX is a trademark of
Tektronix, Inc. MCS is a trademark of Intel Corporation. MS and XENIX are trademarks
of Microsoft Corporation.

CONTENTS

1. LINKING 86PC USING TEKTRONIX TOOLS

DEFINITIONS 1

1 Addressability 1

2 Combined segments 1

3 Separate segments 1

4§ Segments separate from other segments 2
5 Merged segments 2

.6 Diatinet segments 2

SOME LINKER CONSIDERATIONS 2

1 Restrictions 2

.2 Pascal main program and i/0 3

3 No Pascal routines 4

WRITING A LINKER COMMAND FILE DIRECTLY 5
1 Important symbols 5

.2 Addressability requirements 6

.3 An example ("small™ model) 7

.4 An example ("medium-~large" model) 8

USING ICS TO CREATE A LINKER COMMAND FILE 2

2. USING 86PC TO INTERFACE TO THE 8540/8560 .,

THE PASCAL SOLUTION 11

THE SVC SOLUTICN 12

Initialization routine 12

Four-byte utility routines 12

SVC function routines 13

+1 Zero—-argument routines 13
One-argument routines (pointer) 13
Two-argument routines (byte, pointer)
Two-argument routines (byte, dword) 14

VC interface routines 15

1
3
.3
.3.
. 3.
.3.
3.
3.
m
.5 8VC executors 15

3. TEKTRONIX LINKER ERRORS ENCOUNTERED WITH 86/PL OBJECT

3.1 SECTION NAMES 17
3.2 TYPICAL ERRORS 17
3.3 TRUNCATION ERRORS 18

2
3
il
S Three-argument routines (byte, word, pointer)
& Three-argument routines {(word, word, pointer)
3
S

14
14

CONTENTS

i

"

17

ii USING 86/PC

APPENDICES

A. CONSIDERATIONS FOR MIXED MODELS OF COMPUTATION -

A.1 DEFINITIONS 23
A.2 DISTINCT MODELS OF COMPUTATION 23

a
A.3
A.3
ALY
A.4,
ALY
A4
A4

1 Four-byte pointers 25

.2 Two-byte pointers 25

.2.1 Pointers to procedures 25
.2.2 Pointers to non-procedures 25

ASSEMBLY-LANGUAGE ROUTINES FOR SVC'S

B.1 "NEAR" PROCEDURES 27

B.2 "FAR" PROCEDURES 28

86/PL ROUTINES FOR SVC'S

* » = = »

TRACKING DOWN TRUNCATION ERROR3S . . .

INDEX .

« = = a2 =

- & » = =

23

27

29
39
45

FIGURES 1iii

FIGURES
Linker command file . . . ¢ « & « & ¢ 4 o & « s s o o « 5 o o &« 39
Linker error messages . . .+ .« « « & « s = s+ 2 s « s & &« o o s o 4o
Seetion information ¢ & v 4 it 4 i s s 4 b 4 s e e e . 41
Partial assembly-language 1isting v + ¢ v ¢ ¢ o « + « 43

Partial statement-numbered listing &« ¢ &« & = &+ « o « = LY

CHAPTER 1 LINKING 86PC USING TEKTRONIX TOOLS 1

1. LINKING 86PC USING TEKTRONIX TOOLS

86pc can generate Tektronix-compatible object files (LAS format).
However, an application program frequently consiszts of several object files
which must be linked together. 1In any case, the linked application program
must be assigned physical addresses in the target system. This chapter
addresses linking an application program and assigning it physical addresses;
both operations are performed with the Tektronix link program,

1.1 DEFINITIONS

In this section, we define some terms used in other sections.

1.1.1 Addressability

X is said to be addressable from Y if the quantity

(address of X) — 16 * ({address of Y) / 16)
is no larger than 64K-1, Since the address space of the 8086 wraps around
from OFFFFFH to 0, X is considered to lie in the virtual address range
[100000H, 10FFFFH] when X lies in [0, OOFFFFH] and Y 1lies in [OFO0O000H,
OFFFFFH]. Examples:
X locations addressable from X
010000H 010000H-01FFFFH
OEABO5H OEAB9OH-OF ABSFH

OFDEBOH OFDE8OH-OFFFFFH and 000C00H-OODE7FH (virtual OFDE8SOH-10DET7FH)

1.1.2 Combined segments

A class of segments C is said to be combined when no more than 64K of C
segments are allowed to be present. All the C segments are conceptually

combined into a single C segment; they must be addressable from a common
location.

1.1.3 Separate segments

A class of segments C is said to be separate when more than 64K of C
segments are allowed to be present (there need not actually be more than 6UK).
Each C segment is conceptually disjoint from every other C segment; they need
not be addressable from a common location.

2 USING 86/PC CHAPTER 1

1.1.4 Segments separate from other segments

A class of segments C is said to be separate from another class of
segments C' when there is no explicit requirement that C segments and C'
segments be addressable from a common location. It is not requlred that the C C
segments or the C' segments themselves be separate.

1.1.5 Merged segments

A class of segments C is said to be merged with another class of segments
L' when any data for a C segment is actually allocated within a corresponding
C' segment. No C segments will actually appear.

1.1.6 Distinet segments

A class of segments C is said to be distinet when C segments are not

merged with any other class of segments. € segments will appear in the obJect
file,

1.2 SOME LINKER CONSIDERATIONS

The link program will enforce the following restrictions on the object
files to be linked:

e A combined code segment may wrap around location 0; that is, it may
occupy locations OFB8000H-OFFFFFH and 000000H-0QT7FFFH. No other combined
segment may wrap around location 0 {but uncombined segments may).

1.3 USING ICS TO CREATE A LINKER COMMAND FILE

The Tektronix ics program (and icsp, the ics prompter) may be used with
object files produced by 86pc. This 18 particularly useful when a Pascal main
program or the Pascal I/0 libraries are used., The primary output of ics is a
command file for link, the Tektronix linker.

1.3.1 Restrictions

The ics program will enforce the following restrictions on the object
files to be linked:

@ No more than 64K of code. Thus, the "medium" and "large™ models may not
conveniently be linked in this way.

e No more than 64K of constants + data + stack. Thus, the "large" model
may not conveniently be linked in this way, and problems may even occur
for the "compact" model.

CHAPTER 1 LINKING 86PC USING TEKTRONIX TOOL3S 3

1.3.2 Pascal main program and i/o

A Pascal main program object module resides in bjdrv.po, and two 86/PL

support object modules reside in bjsup.86t and blackj.86t. The ies source
file bj6.is contains

PASCAL CONFIGURATION Default Configuration
HARDWARE_CONFIGURATION 8086

INSTRUCTIONS ROM [00060H , OTFFFH]
CONSTANTS_ROM {08000H , 08FFFH]
GLOBAL_VAR_RAM [09000H, ODTFFH]
HEAP_STACK_RAM [OD8OOH , OFFFFH]
RESET_MEMORY NO

SERVICE CALLS DEFAULT
SOFTWARE_CONFIGURATION bjdrv.po
MODULE bjsup.86t
MODULE blackj.86t
LIBRARY NONE
FILE_SUPPORT DEFAULT
INTERRUPT CONFIGURATION NONE

RESTART LABEL PASCAL_BEGIN
END

which produces the object file bj6.io and the linker command file bj6.ic,
containing

-0 bj6.io

-D STKBASEQQ=O0FFFFH

-D HEAPBASEQQ=0D800H

=D SVCLOCZZ=0FFFOH

-m INSTRQQ.ROM=060H-07FFFH

~m CONSTQQ.ROM=08000H~08FFFH

~m DATAQQ.RAM=09000H-0DTFFH

-m SRBVQQ.RAM=040H-05FH
¢lasa=INSTRQQ range INSTRQQ.ROM
class=CONSTQQ range CONSTQQ.ROM
class=DATAQQ range DATAQQ.RAM
¢lass=3RBVQQ range SRBVQQ.RAM
bjdrv.po

bjsup.86t

blackj.86t

CODEBASEQQ=060H
DATABASEQQ=08000H
/1ib/8086/pas.hijio.sesd
/1ib/8086/pas.f'p86.scsd
/1ib/8086/pas.rts,.scad
/1ib/8086/pas.err.scad
/1ib/8086/pas.posi.scsd
/1ib/8086/pas.conv.scsd
PASCAL BEGIN

UL bbbbbbbbelaLL

The Tektronix linker may then be invoked with

4 USING 86/PC

link -0 bjé -c bjb.ic

1.3.3 No Pascal routines

An 86/PL main program object module resides in root.q, and two 86/PL
support object modules reside in first.q and second.q. The ies source file

root.is contains

PASCAL_CONF IGURATION
HARDWARE_CONF IGURATION
INSTRUCTIONS ROM
CONSTANTS_ROM

GLOBAL VAR_RAM
HEAP_STACK_RAM
RESET_MEMORY

SERVICE CALLS
SOFTWARE_CONF IGURATION
MODULE

MODULE

LIBRARY

FILE_SUPPORT
INTERRUPT_CONF IGURATION
RESTART_LABEL

END

86pc example

8086
[OEOQQOOH,0EYFFFH]
[OEAOOQH, OEEFFFH]
[OEFOOOH, OFQFFFH]
[OF 1000H, OF 2FFFH]
YES

NONE

root.q

first.q

second.q

NONE

NONE

NONE

PASCAL BEGIN

CHAPTER 1

which produces the object file root.io and the linker command file root.iec,

containing

-0 root.ioc
-D STKBASEQQ=0F2FFFH
-D HEAPBASEQQ=0F 1000H

-m INSTRQQ.ROM=0EQOOQOOH-QOEOFFFH

-m CONSTQQ.ROM=0EAOCOH-OEEFFFH

-m DATAQQ.RAM=QEF(0Q0H-OFOFFFH

-L ¢lass=INSTRQQ range INSTRQQ.ROM
-L class=CONSTQQ range CONSTQQ.ROM
-L ¢lass=DATAQQ range DATAQQ,RAM

-0 root..q

-0 first.q

-0 second.q

-D CODEBASEQQ=0EODQ00O0OH
~D DATABASEQQ=0EAQOQOH

/1ib/8086/pas .fp86.scsd
/1ib/8086/pas.rts,.ascsd

/1ib/8086/pas.noio.scsd

=0
-0
-0 /1ib/8086/pas.err.scsd
-0
-0

/1ib/8086/pas.conv.scsd

-x PASCAL BEGIN

The command file should be modified as follows:

R —

CHAPTER 1 LINKING 86PC USING TEKTROMIX TOOLS 5
e The line -0 root.io includes the object module which interfaces with
the Pascal run-time system; it should be removed.

@ The lines -0 /1ib/8086/pas.<variousd.scsd include the Pascal run-time
routine libraries; they may be removed.

The line -x PASCAL BEGIN references the standard Pascal main progran
entry point; it should be removed. The address of the main program
code in root.q will be used as the entry point.

This leaves the command file

~D STKBASEQQ=0F 2FFFH

=D HEAPBASEQQ=0F 1000H

-m INSTRQQ.ROM=0EOQOQH~0OE9FFFH

-m CONSTQQ.ROM=0EAOQOQH-QEEFFFH

-m DATAQQ.RAM=0EFOQOH-OFOFFFH

=L. ¢1ass=INSTRQQ range INSTRQQ.ROM
-L ©¢lass=CONSTQQ range CONSTQQ.ROM
class=DATAQQ range DATAQQ.RAM
root.q

first.q

second.q

CODEBASEQQ=0E0000H

-D PATABASEQQ=0EAO0Q0H

Lbbbd

1.4 WRITING A LINKER COMMAND FILE DIRECTLY

If an application contains no Pascal object modules, it may be simpler to
write the linker command file directly than to go through ics. More
seriously, any model of computation other than "small" (the default) may
violate the requirements of ics, thus precluding its use,

1.4.1 Important symbols

The object modules produced by 86pc were designed to be compatible with
Pascal object modules. Pascal uses several symbols which are defined at
link-time to resolve certain references. Object files produced by 86pc must
also use these symbols in most cases. .

CODEBASEQQ This symbol is only used when code segments are combined. It then
corresponds to the address of cgroup in Intel-format object files,
the (paragraph-aligned) address relative to which code segment
references are made.

DATABASEQQ This symbol is only used when data segmentsz are combined. It then
corresponds to the address of dgroup in Intel-format object files,
the (paragraph-aligned) address relative to which data segment
references are made,

6 USING 86/PC CHAPTER 1

HEAPBASEQQ This symbol is always required, It is the (paragraph-aligned)
address of the stack segment in Intel-format object files.

STKBASEQQ This symbol is always required, It is the 1largest address
corresponding to a byte in the stack (not the address of the first
byte past the stack). This number should be odd.

ENDREL This is the Tektronix equivalent of the MEMORY array. The linker
has virtually complete control over this symbol.

INSTRQQ This is the class name of all code segments produced by 86pe and
Pascal, This is true with 86pc for all models of computation,

DATAQQ This is the class name of all data segments produced by B6pec and
Pascal. This is true with 86pc for all models of computation.

CONSTQQ This is the class name of all constant segments produced by B86pc
and Pascal. This is true with 86pc for all models of computation
in which distinect constant segments appear. This celass 1is
undefined when constants are merged with code or data. |

The value of each of CODEBASEQQ, DATABASEQQ and HEAPBASEQQ must be a multiple

of 16 (the hex value must end in "0"); the linker may produce strange error
messages if this is not true.

1.4.2 Addressability reguirements

We here give addressability and symbol existence requirements for various
models of compilation.

Separate code segments
CODEBASEQQ is not required.

Combined code segments

CODEBASEQQ is required. All code segments must be addressable from
CODEBASEQQ. Procedures with combined code expect the 8086 CS register
to contain CODEBASEQQ/16.

Distinct constant segments

DATABASEQQ is required. All constant segments must be addressable
from DATABASEQQ. -

Separate data segments
DATABASEQQ is not required.

Combined data segments

DATABASEQQ is required. All data segments must be addressable from
DATABASEQQ. Procedures with combined data expect the 8086 DS register
to contain DATABASEQQ/16.

Stack separate from data
STKBASEQQ and HEAPBASEQQ are required. STKBASEQQ must be addressable
from HEAPBASEQQ. Procedures with stack separate from data expect the
8086 SS register to contain HEAPBASEQQ/16.

CHAPTER 1 LINKING 86PC USING TEKTRONIX TOOLS 7

Stack not separate from data
DATABASEQQ, STKBASEQQ and HEAPBASEQQ are required. HEAPBASEQQ must be
addressable from DATABASEQQ, and STKBASEQQ must be addressable from
HEAPBASEQQ and DATABASEQQ. Procedures with stack not separate from
data expeet the 8086 SS register to contain DATABASEQQ/16.

1.4.3 An example ("small" model)

An application consists of an 86/PL main program object module residing
in root.q, and two 86/PL support object modules residing in first.q and
second.q. The application has < 2700H bytes of code, < 300H bytes of
constants, < 1800H bytes of data, < 200H bytes of stack, and no references to
the MEMORY array. The target machine will have ROM for instructions from
locations O-03FFFH, ROM for constants from OFOO00OH-QFO7TFF, and RAM from
locaticns OF0800H-OF 47FFH.

First, we define the link-time constants:

-D CODEBASEQQ=000400H
=D DATABASEQQ=0F 000CH
-D HEAPBASEQQ=0F 4000H
-D STKBASEQQ=OFU47FFH

Next, we define address ranges for the various classes:

=L class=INSTRQQ range 000400H-D03FFFH
L. ¢lass=CONSTQQ range OF0000H-OFQ7FFH
-L class=DATAQQ range OF0800H-OF3FFFH

The class names must be capitalized as shown. Since no memory range was

split, it is not necessary to name the memory ranges., Finally, we define the
object files to be linked:

-0 root.q
-0 first.q
-0 second.q

This gives us the linker command file

-D CODEBASEQQ=000400H
~D DATABASEQQ=0FQ000H
=D HEAPBASEQQ=0F 4000H
=D STKBASEQQ=0FY4TFFH
=L class=INSTRQQ range QQCUOOH-OO3FFFH
-L class=CONSTQQ range OF00Q0H-OFOTFFH
=L ¢lass=DATAQQ range OF0B0OH-OF3FFFH
-0 root.q
-0 first.q
-0 second.q

8 USING 86/PC CHAPTER 1

1.4.4 An example ("medium—large" model)

The model of computation described does not correspond to any of Intel's
models, nor does it have an associated compiler keyword. This particular
model has

® an arbitrary amount of code (separate code segments)

® at most BUK of data + constants (combined data segments; distinct,
combined constant segments)

e at most HUK of stack (stack separate from data)

It is generated by the -Mcs compiler switch. Note that, in general, ies
cannot be used to generate a linker command file for an application compiled
in this model: there may be more than 64K of code, and as much as 128K of
constants + data + stack.

An application consists of an 86/PL main program object module residing
in main.q, three 86/PL support object modules residing in subl.g, sub2.q and
sub3.q, and a library of support routines residing in support.lib. The
application requires a large amount of 3space for code, < 2800H bytes for
constants, < OCOOOH bytes for data, and < H4000H bytes for the stack (the
application has several reentrant procedures, hence the large stack). The
target machine will have the following memory layout:)

ROM locations 0-01FFFH, 020000H-02FFFFH, 090000H-OBFFFFH,
OF000CH-OF7FFFH, OFFEOOH-OFFFFFH

RAM locations 088000H-OBFFFFH, 0COOOOH~OCEFFFH

(the ROM chip for locations 0~01FFFH contains a complete interrupt-processing
system, written previously; the ROM chip for locations OFFECOH-OFFFFFH will
contain an intersegment Jjump to the main program; neither is actually
available for the application itself).

FirSt, we define the link-time constants:
-D DATABASEQQ=0BDOOOH

-D HEAPBASEQQ=088000H
-D STKBASEQQ=08FFFFH

(CODEBASEQQ is not required; DATABASEQQ is in ROM because the constants must
go in ROM), Next, since the memory range for code is split, we name the part
of memory available to code:

-m instructions=020000H~-02FFFFH 090000H-OBCFFFH OFQ000H-OFTFFFH
Next, we define address ranges for the various classes:

-1 elasa=zINSTRQQ range instructions

=L ¢lass=CONSTQQ range OBDOOOH-OBFFFFH
=L ¢lass=DATAQQ range QOCO000H-OCBFFFH

(the code segments have the class INSTRQQ, even though they're separate).

CHAPTER 1 LINKING 86PC USING TEKTRONIX TOOLS

Finally, we define the object files to be linked:

=0 main.q
-0 subl.g
-0 sub2.q
-0 sub3.q
-0 support.lib

Thi=s gives us the linker command file

=D DATABASEQQ=0BDOOOH

-D HEAPBASEQQ=088000H

-D STKBASEQQ=08FFFFH

-m instructions=020000H-02FFFFH 090Q00CH-OBCFFFR OF 0000H-OFTFFFH
-L ¢lass=INSTRQQ range instructions

=L ¢lass=CONSTQQ range OBDQOOH-OBFFFFH
-L class=DATAQQ range O0CO00OH-OCBFFFH
main.q

subl.q

sub2.q

sub3.q

support.lib

bbobd

CHAPTER 2 USING 86PC TO INTERFACE TO THE 8540/8560 11

2. USING 86PC TO INTERFACE TC THE 8540/8560

The 8086 ultimately communicates with the outside world through IN and
OUT instructions. During program development, it iz normally inconvenient to
have specifie i/o ports assigned and connected to the development system.
Normally, i/0 is performed through interface routines ("read", "write") which
exist in two forms, one for the final stage {in which the appropriate IN ana
OUT instructions appear), and one for the development state (in which "magic"
linkages to the debugging/operating system appear). This chapter addresses
development-stage i/o on the Tektronix 8540,

2.1 THE PASCAL SOLUTION

Pascal has a runtime support library described in Section 7 of the
Tektronix 8560 Pascal 8086/8088 Compiler Users Manual. This library contains
i/o functions and a host of other functions as well, The 86pc compiler can
access all of the runtime support library routines except those that expect
parameters in specific registers (notably the long integer operations, DIVLQQ,
LSHRQQ, MODLQQ, MULLQQ and SHLQQ); those routines which expect arguments which
are not constructs of 86/PL (like sets)} may require strange linkages, Thus,
for example, an 86/PL "read™ routine can simply call the Pascal "test for
end-of-line", "read a character", and "read end-of-line" routines.

Although the Pascal runtime support 1library provides a convenient,
powerful set of i/0 routines, they currently have one drawback. They are
designed for wuse in the normal Pascal model of computation, namely, the
"small" model. This model has combined code segmenta, and expects the data,
constant and stack segments to be addressable from DATABASEQQ (combined data;
distinet, combined constants; stack not separate from data), and therefore

makes all pointers to be two-byte offsets from the (fixed) value of
DATABASEQQ.

The code requirement cannot easily be overridden (a solution exists, but
it requires extra assembly-language code and some special considerations when
generating the linker command file) (see also Section A.3). The
data/constant/stack requirement can be relaxed somewhat; the following must be
observed when passing an address (pointer) to a runtime library routine:

@ a passed address must be made into a two~byte quantity (by using the
offaset$of operator, if necessary);

& a passed address may only reference a datum in a segment not separate
from the current data segment.

{see also Section A.4).

12 USING 86/PC CHAPTER 2

2.2 THE SVC SOLUTION

A more general solution to the i/o problem requires the use of the 8540
3VC (service call) facilities, described in Section 6 of the Tektronix 8540
System Users Manual. Appendix B and Appendix C contain 1listings of some
assembly-language and 86/PL procedures which may simplify the 86pc user's task

of interfacing with the SVC facilities. This section describes their function
and use.

The procedures may be classified as
an initialization routine
@ 3VC function routines
SVC interface routines
¢ four-byte utility routines
@ SVC executors (for emulation modes 0, 1, and 2)
The SVC function and interface routines are written to use a single SVC
(namely, SVC1); equally well, the SVC function and interface routines could be
passed an SVC number (1-8 or 0-7) as an extra argument. The SVC execuftors
will function properly in either case. The variable mode should be
initialized to the desired emulation mode (0, 1, or 2). :
The routines have all been written assuming four-byte pointers., One of

the four-byte utility routines must be modified if pointers are only two
bytes.

2.2.1 Initialization routine

The routine initialize$srbs initializes the SRB pointer vector in low

memory. It should be called before any SVC function routine or S¥C interface
routine is called.

2.2.2 Four-byte utility routines

The four-byte utility routines interconvert between LAS-format and
Intel-format 4-byte quantities,

An LAS-long is a four-byte integer; its most significant byte is stored
at 1ts lowest-addressed location, and its least significant byte is stored at
its highest-addressed location, An Intel-dword is also a four-byte integer;
its least significant byte is stored at its lowest-addressed location, and its
most significant byte is stored at its highest-addressed location.

An LAS-pointer is a four-byte unsigned quantity; its most significant
byte is stored at its lowest-addressed location, and its least significant
byte is stored at its highest-addressed location (its most significant 12 bits
will normally be zerces), An Intel-pointer is a four-byte quantity, composed
of a two-byte offset and a two-byte selector or frame; the offset is at the

CHAPTER 2 USING 86PC TO INTERFACE TO THE 8540/8560 13

lower-addressed 1locations, Note that an Intel-pointer has a unique
representation as an LAS-pointer, but an LAS-pointer has 68K different
representations as an Intel-pointer; the conversion from LAS-pointer to
Intel-pointer returns the representation with an offset in the range 0-0fh,

intel$dword$to$lasslong
returns the LAS-long value of an Intel-dword

intelptrtodlas$ptr
returns the LAS-pointer value of an Intel-pointer

las$long$todintel$dword
returns the Intel-dword value of an LAS-~-long (passed as a dword)

las$ptritodintelsdptr

returns the Intel-pointer value of an LAS-pointer (passed as a dword)
(two versions, depending on the model of computation)

2.2.3 SVC function routines

The SVC function routines take arguments from the referencing 86/PL
program. The routines could be rewritten to also accept an SVC number (a byte
or word argument). The SVC function routines pass a function number and their
arguments to an 3VC interface routine, and optionally extract information from
the appropriate SRB and return it. The SVC function routines are not
absolutely necessary; an industrious programmer could define literals for the
various function numbers, and just call the SVC interface routines.

Starred routines do not actually appear in the listing; their definition
should be obvious from the other routines.

2.2.3.1 Zero-argument routines.

The following routines take no arguments.

svc$abort 1fh - abort program

sve$exit lah -~ exit program

sve$last$eoni 11h ~ get last CONI character

sveflogderror 0%9h - log error message (logs previous status)
ave$read$clock 16h - read program clock

2.2.3.2 One-argument routines (pointer).

The following routines take a single argument, a pointer, which points at
a RETURN-terminated filespec, specifying a load file to load. A pointer value
is returned, the transfer address. This address may not be in a form suitable
for transfer use: (o, f), (o+16, f-1), (o+16%2, £-2), ... (o+16%4095, f-4095)
all specify the same physical address, but the second value (the frame or
selector part) is very important to the program.

svedloadsovl 17Th ~ load overlay

14 USING 86/PC CHAPTER 2

2.2.3.3 Two—argument routines (byte, pointer).

The following routines take two arguments. The first, a byte, i3 the

channel number. The second, a pointer, points at a RETURN-terminated name or
filespec.

sve$assign$channel 10h - assign channel
sve$creategfile 90h - create file
svcdopens for$read 30h -~ open for read
* svc$openg for$update 70h - open for read or write
% svc$opens for$write 50h - open for write

2.2.3.4 Two—argument routines (byte, dword).

The following routines take two arguments. The first, a byte, 1is the
channel number. The second, a dword, iz a file offset. All the routines
return a dword value, the new file offset (after the seek).

sve$seek$reldtosd Hih - seek to byte in file

* ave$seek$relitodeof 6lih - seek to byte in file relative to eof
¥ svc}seekreltoshere 24h - seek relative to byte in file

2.2.3.5 Three-argument routines (byte, word, peinter).

The following routines take three arguments, The first, a byte, 1s the
channel number, The second, a word, is a number of bytes or characters to
read or write. The third, a pointer, points at a2 line or buffer. All the

routines return a word value, the number of bytes or characters read or
written. :

svepread$asedgo 81h - read ascii and proceed
sve$read$asciwait 01h - read ascii and wait

* sve$read$bindgo 41h - read binary and proceed

* sve$read$bin$wait ¢lh - read binary and wait

* gvc$rewrite$ascigo a?h - rewrite ascii and proceed

* gve$rewritedascdwait 22h - rewrite ascii and wait

* gve$rewritedbindgo e?h - rewrite binary and proceed

% gveprewritedbindwait 62h - rewrite binary and wait
svedwritedascigo 82h -~ write ascii and proceed
avepwrite$asciwait 02h - write ascii and wait

% gycpwritedbinggo 42h - write binary and proceed

* svedwritebinwait ¢2h ~ write binary and wait

2.2.3.6 Three-argument routines (word, word, pointer).

The following routines take three arguments. The first, a word, is the
number (ordinal) of the desired parameter., The second, a word, is the maximum

size of the parameter, in bytes. The third, a pointer, points at a line or
buffer which will hold the argument.

® gvctpgetomdparm 13h - get command line parameter
* svchget$execparm 16h - get execution line parameter

CHAPTER 2 USING 86PC TO INTERFACE TO THE 8540/8560 15

2.2.4 3YC interface routines

The SVC interface routines accept an 3SVC function number and a number of
other arguments, These routines set up an SRB and then call svego. Svego

calls the assembly-language SVC executor appropriate to the selected emulation
mode,

The following table lists the arguments for the wvarious SVC interface
routines,

sSVego (no arguments)
svex function (byte)
svcxb function (byte), buffer {(pointer)

svexeb function (byte), channel (byte), buffer {pointer)

svexelb function (byte), channel (byte), length (word), buffer {(pointer)

svexd function (byte), offset (dword)

svexplb function (byte), position (word), length (word), buffer (pointer)

2.,2.5 SVC executors

The SVC sequence for emulation modes 0 and 1 requires an OUT instruction
followed by one NOP instruction: the sequence for mode 2 requires an OUT
instruction followed by two NOP insatructions, Since the compiler cannot
generate arbitrary NOP's, these procedures must be written in assembly
language. The assembly-language routine svecalll performs the 3VC sequence for
emulation modes 0O and 1; svecall2 performs the sequence for mode 2.

CHAPTER 3 TEXTRONIX LINKER ERRORS ENCOUNTERED WITH 86/PL OBJECT 17

3. TEKTRONIX LINKER ERRORS ENCOUNTERED WITH 86/PL OBJECT

This chapter deseribes some of the common 1linker errors and the
sltuations which provoke them. It assumes that fairly standard linker
commands are used; users sufficiently sophisticated to use linker features not
described in Chapter 1 are assumed to need no further instruction here,

3.1 SECTION NAMES

The compiler names sections in the following manner:

I.module the code section for module

C.module the constant section for module

D.module the data section for meodule

A.module the absolute section for module (not always present)

If the section name would be longer than 16 characters, the first 6 and the
last 10 characters of the name are used.

3.2 TYPICAL ERRORS

link:100 (S) Name symbol in section section previously defined

Symbol is declared "public" in section. It was either declared "public"
in some other module, or it is one of the class names {(INSTRQQ, CONSTQQ,

DATAQQ) or address symbols (CODEBASEQQ, DATABASEQQ, HEAPBASEQQ,
STKBASEQQ).

1link:110 (E) No memory allocated to section

The memory range assigned to the section's class of segments (code,
constant, or data) is not large enough to hold all of them. Section is
effectively still relocatable., The memory range for section's class
should be increased, or section's size should be decreased.

link:114 (E) Absolute section section conflicts with -L switch

Section is absolute, it appeared in a -L command, and the address in the
-L command doesn't match the address of section. Remove the offending -L
command .

link:115 (E) Truncation error at address
A 16-bit address-like quantity does not fit in 16 bits. Address is the

physical address of the 16-bit quantity. It is not the address of the
referenced item (the target). Typically, it is the address of the offset

18 USING 86/PC CHAPTER 3

in an assembly-language instruction, which is 14 greater than the
address of the first byte in the instruction. 3See Section 3.3 for a more
detailed description.

1ink:118 (W) Transfer address undefined

The object modules did not include a main program, and no -x command
appeared., This may be the desired situation.

1link:119 (W) Processor changed from family-1 to family-2

Different Tektronix processors include different microprocessors in the
same family. If both families contain the desired target microprocessor,
this warning is innocuous.

1ink:125 (W) Reserved name symbol used incorrectly

This appears to occur when a user program defines ENDREL to be a publiec

datun or procedure. The linker has reserved the definition of ENDREL to
itself,

link:128 (E) Absoclute or symbol file section section cannot be relocated
Section is an absolute section, and it appeared in a -L command. This

message appears even if the address in the -L command is appropriate to
section., Remove the offending -L command.

3.3 TRUNCATION ERRORS

A truncation error occurs when a 16-bit address-like quantity does not
fit in 16 bits. The address in the error message is the physical address of
the 16~bit address-like quantity. It is not the address of the referenced
item (the target). Typically, it is the address of the offset in an
assembly-language instruction, which is 1-4 greater than the address of the
first byte in the instruction.

There are two general causes of truncation errors:

@ a signed quantity (a displacement) processed by the linker is outside
the range [-32K, 32K-1] ([Offff8000h, 000007fffh])

@ an unsigned quantity (an offset) processed by the linker is outside
the range [0, 64K-1] ([00C000000h, 00000ffffhl)

Displacements occur with jump and c¢all instructions. Offsets ocecur with
addresses in the data or const segments.

The following specific things can cause truncation errors:

¢ Suppose a call instruction at address 01000h references a procedure at
address Of000h. The calculated displacement is (0f000h - 01000h) or
0e000h, which is outside the displacement range. However, this is a

spurious error. The 8086 interprets a displacement of 0e000h as

CHAPTER 3 TEKTRONIX LINKER ERRORS ENCOUNTERED WITH 86/PL OBJECT 19

-02000n, but it performs displacement arithmetic within a 16-bit
register, making 01000k - 02000h = -071000h = Of000h. The same
rationale holds for a call instruction at Of000h which references a
procedure at address 01000h.

Consider the linker commands

-m data.ram=07000H-16FFFH
=L ¢lass=DATAQQ range data.ram
-D DATABASEQQ=01000H

If more than 9000h (36K) of data is present, some of the data is not
addressable from DATABASEQQ; any attempt to get a 2-byte address of
such a datum will provoke a truncation error.

Consider the linker commands

-m data.ram=09000H-0FFFFH
-L ¢lass=DATAQQ range data.ramf
=D DATABASEQQ=09000H

The -L command will provoke a warning message of the form
link:10 (W) Undefined memory

The linker then places any data segments in the next available memory,
not necessarily in the data.ram area. A 2-byte reference to any datum
in a data segment which falls in the range 0-8FFFH or 19000H-OFFFFFH
will provoke a truncation error. Note that eliminating the warning

message (by correctly typing the memory range name) also eliminates
the truncation error.

Consider an 86/PL source file define.p containing the statement
declare absolute$thing word public at (23%h);
and an 86/PL source file reference.p containing the statements

declare absolutej{thing word external;
declare thing word;

thing = absolute$thing;

If define.p and reference.p are compiled with combined data, the
compiler assumes +that all external data are addressable from
DATABASEQQ. In this example, if DATABASEQQ has a value greater than
240h, the value of the offset (address of absolute$thing — DATABASEQQ)
is negative, and the linker finds a truncation error.

Note that this particular problem can only occur when an external
reference is made to an item declared to reside at an absolute address
and the corresponding segment is not separate. A local reference may
always be made to an item at an absolute address. Perhaps the
simplest method of dealing with items at absolute addresses which must
be shared among several object modules is to place all the absolute

20 USING 86/PC CHAPTER 3

definitions (declared 1local, not public) in a single file which
appears in an include control in every file which needs any such
absolute definition. file .

Appendix D contains an example of determining the root cause of the
truncation errors in a link invocation.

13232332223 111]
* #
* APPENDICES *
*]
ERRRAREXERENES

21

APPENDIX A CONSIDERATIONS FOR MIXED MODELS OF COMPUTATION 23

A. CONSIDERATIONS FOR MIXED MODELS OF COMPUTATION

This chapter describes some of the things which must be kept in mind when
it is necessary to compile different object modules with different models of
computation, and then link and execute the result,

A.1 DEFINITIONS

In this chapter, several terms have very specific meanings:

® A constant is any variable initialized with the DATA attribute, and any
"long constant™,

® A reentrant variable is any uninitialized variable local to a procedure
with the REENTRANT attribute,

® A normal variable is any uninitialized variable which is not a reentrant
variable, and any variable initialized with the INITIAL attribute

8 An item is public if it is defined with the public attribute in the
current object module.

@ An item is local if it does not have the public or external attribute (it
is local to the current object module),

@ An item is private if it is defined within the current procedure (local
to the current procedure}.

All 86/PL procedures are DS-preserving: the value in the 8086 DS
register upon return is the same as the value upon entry. All main programs
initialize DS upon entry.

A.2 DISTINCT MODELS OF COMPUTATION

The model of computation has a single code-space component (c), and five
data-space components (d, s, m, p, r). The following table gives the
different data-space components of the possible distinet models of
computation, and the total memory sizes implied by each. Every specification
may also have a code-space component. Note that several specifications may be
equivalent, and that any data-space component forces the p component (-M and
~Mc are the only models in which pointer variables are two bytes long).

=M 64K data+stack+constant+memory

-Mp 64K data+stack+constant+memory

24 USING 86/PC APPENDIX A

-Ms 64K data+constant+memory, 64K stack (also -Msp)

~=Mm 64K data+constant+stack, 64K memory (also -Mmp)

~Msm 64K data+constant, 6UK stack, 64K memory {also -Msmp)

-Mr 64K data+stack+memory, constants merged with code (also -Mrp)

~Mrs 64K data+memory, 64K stack, constants merged with code (also -Mrsp)
~Mrm 64K data+stack, 64K memory, constants merged with code (also -Mrmp)

-Mrsm 64K data, 64K stack, 64K memory, constants merged with code ({(also
-Mr smp)

-Md 1024 data, 64K stack, 6UK memory, constants merged with data (also
-Md[s][mlfpl)

-Mdr 1024k data, 64K stack, 64K memory, constants merged with code (also
-Mdr[s]1[ml[pl) ' '

Small corresponds to -M; compact, to -Msm; medium, to -Mcp; and large, to
-Mcdr.

A.3 CALLING RESTRICTIONS

The various models of computation impose various restrictions on what
calls can actually be properly executed.

A.3.1 Code segment combination

e A procedure may call any other procedure in the current object module,
whether compiled with separate or combined code segments.

& No procedure may call a procedure in a different object module compiled
with the "other" kind of code segments (a procedure compiled with
separate code segments may not call an external procedure compiled with
combined code segments, and conversely).

The second restriction arises from the nature of the "call® and "return®
instructions and from the resulting stack layout in the different models of
computaton.

A.3.2 Data segment combination

® Any local procedure may call any other procedure in any object module
whatsoever (subject to the code segment combination restrictions}).

e Any public procedure compiled with combined data may call any other
procedure in any object module whatsoever (subject to the code segment
combination restrictions).

s

APPENDIX A CONSIDERATIONS FOR MIXED MODELS OF COMPUTATION 25

® No public procedure compiled with separate data may call any procedure in
a different object module compiled with combined data; except that it may
reference a reentrant procedure in a different object module which only
references private constants (if constants are merged with code),

arguments, and reentrant variables (it references no data via the 3086 DS
register),

A.4 POINTER RESTRICTICNS

The various models of computation impose various restrictions on what
indirect (based) references can actually be properly made.

A.4.,1 Four-byte pointers

® Assuming that four-byte pointers are present in the model of computation,
any procedure may reference the datum to which any four-byte pointer
points (there are no restrictions on the use of four-byte pointers),

A.4.2 Two-byte pointers

A two-byte pointer may be a pointer variable if four-byte pointers are
not present, a word variable, or a procedure argument,

A.4,2.1 Pointers to procedures,.

® Any procedure a compiled with combined code may reference (indirectly
call) procedure b via a two-byte pointer, provided that b was also
compiled with combined code. '

A.4.2.2 Pointers to non-procedures.

e Any procedure may reference a loecal or public normal variable via a
two-byte pointer,

e A procedure compiled with separate data may not reference any external
datum via a two-byte pointer.

® A procedure compiled without distinet constant segments may not reference
any constant via a two-byte pointer.

e A procedure compiled with stack separate from data may not reference any
reentrant variable via a two-byte pointer.

o A procedure compiled with memory separate from data may not reference any
datum in the MEMORY array via a two-byte pointer.

APPENDIX B ASSEMBLY-LANGUAGE ROUTINES FOR SVC'S 27

B. ASSEMBLY-LANGUAGE ROUTINES FOR SVC'S

This section gives the Tektronix-assembler socurce for SVC routines for
the 8086.

B.1 "NEAR" PROCEDURES

These are the "near™ procedures to perform SVC's in emulation modes 0, 1,
and 2 on the Tektronix 8540. The "near" procedures must be used when the

model of computation has combined code segments (the compiler "M" switch has
no "e" subswitch).

section i.srbs,class=instrqq
global sveall?
global sveall2

neararg equ y

These are the 'near’ procedures to invoke an arbitrary SVC.
INVOKE ONLY WHEN THE 'M' SWITCH HAS NO 'ec' SUBSWITCH.

svealll push bp

mov bp,sp

mov dx,neararg(bp] ; put proper port (argument) in DX
out dx,al

nop ; one no-op for mode-0 and mode-1
pop bp

ret #2 s intrasegment ('near') return

sveall?2 push bp

mov bp,sp :

mov dx,neararg{bpl ; put proper port (argument) in DX
out dx,al

nop ; two no-op's for mode-2

nop

pop bp

ret #2 : intrasegment ('near') return

end

28 USING 86/PC APPENDIX B

B.2 "FARY PROCEDURES

These are the "far" procedures to perform SVC's in emulation modes 0, 1,
and 2 on the Tektronix 8540. The "far" procedures must be used when the model

of computation has separate code segments (the compiler "M" switeh has a "em
subswitch).

section i.srbs,class=instrqq
global svealll
global sveall?

fararg equ 6

These are the 'far' procedures to invoke an arbitrary SVC.
INVOKE ONLY WHEN THE 'M' SWITCH HAS A 'c' SUBSWITCH.

svealll push bp

mov bp,sp :

mov dx,fararglibpl ; put proper port (argument) in DX

out dx,al

nop t one no-op for mode-0 and mode-1

pop bp

rets #2 ; intersegment ('far') return
svcall? push bp

mov bp,sp

mov dx,fararglbp] : put proper port (argument} in DX

out dx,al

nop $ two no-op's for mode-2

nop

pop bp

rets #2 ; intersegment ('far') return

end

APPENDIX C 86/PL ROUTINES FOR SVC'S

C. 86/PL ROUTINES FOR SVC'S

This section gives the 86/PL source for SVC routines for the 8086.

avedtest:

/%

/%

do;

JERERRERREERAERNN N300 0600 20 00003000 26 303000 36 00 0000 00 00 00 00 3006 30 0 30 90 38 06 30 30 00 26 30 36 30 36 00 04 36 3
HREREERNEERNNRENERRTIEN M N T N T IEI6 306303000 303000 3006 0630 00 036 30 00 3 3% 36 3 36
*

This source assumes that pointers are 4-byte items.

*

*

This code is auitable only for the 8§086/8088! *

& #*

ZXRARAXEFERERAEREREERERERANBAREXRBERHERREENNHREIEEXR R R4 ERRER
HERRFRRRERRREERRRAR RN ERNREERRERRRR RN R RSN RERARRERRRRRRRRERY /

'Index' is the sve we'll be using. It's declared literally,
although it could be passed through as an argument to the
procedures. */

declare index literally '0';

declare svel literally 'Offf7h',
sve2 literally 'Offféh’',
svel literally 'Offf5h’,
svcld literally 'Offfih',
svehS literally '0fff3n',
sveb literally '0fff2h',
sve7 literally 'Offfin',
sveB literally 'OfffOh’';

declare sve (8) word data (
svel, svc2, svel, svell, sveS5, sveb, sve7, sveB);

declare srb (8) structure {
fn byte,
chan byte,
status byte,
four byte,
count (2) byte,
1th (2) byte,
bufp dword);

"Mode™ is the mode (0, 1, 2) of the SVC's. It should correspond
to the value selected with the debugger EM command. It may be
declared public to make it easier to find should it be necessary
to modify its value at debug-time, L4
declare mode word initial (0);

29

30 USING 86/PC

svcalll:
procedure (port) external;
declare port word;

end svecallil;

sveall2:
procedure (port) external;
declare port word;

end sveall2;

intel$dword$to$lasslong:
procedure (p) dword;

/% Convert Intel-dword P into an LAS-long

declare p dword;
declare q dword, b (4) byte at (8q):

b{0) = high (high (p));
b(1) = high (p):

b{2) = high (low (p));
b(3) = p;

return q;

end intel$dword$totlas$long;

intel$ptritodlassptr:
procedure (p) dword;

/* Convert Intel-pointer P into an LAS-pointer
declare p pointer;

declare a dword;
declare w word, ws selector at {(@w);

Wws = selector$of (p);
az W
return shl (a, 4) + offset$of (p);

end intelptrtos$lassptr;

APPENDIX C

*/

*/

APPENDIX C 86/PL ROUTINES FOR SVC'S 31
las$longttotintel$dword:

procedure (q) dword;
/* Convert LAS-long Q into an Intel-dword L7

declare q dword, b (4) byte at (€q);

declare a dword;
declare w word:

high (W) = b(0);
low (w} = b(1);
high (a) = w;
high (w) = b(2):
low (w) = b(3);
low {(a) = w;
return a;

end las$longéto$intel$dword;

lasptrto$intelsdptr:
procedure (gq) pointer;

/* Convert LAS-pointer Q into an Intel-pointer ®/
declare q dword, v (4) byte at (8q);
declare a dword; /% only needed for 2-byte pointers L
declare p pointer;
declare w word, ws selector at (6w);
w = shr (las$longdto$intelddword (q), U4):

selector$of (p} = ws;
offset$of (p) = v(3) and Ofh;

return p;
/% If 2-byte pointers are used, the body should be #*/
/% ws = selector$of (8u);

a=w;

a = las$long$to$intel$dword (g} - shl (a, 4);
offset$of (p) = a; ‘
if {(high (a) < 0):
do while 1;
wW=w+1;

end;
endif:
return p; %/
/* The "if" checks for an addreas not reachable from DS (error);

arbitrary recovery may be done (this routine just loops). %*/

end las$ptrito$inteldptr;

32 USING 86/PC

/%

¥ jnitialize$srbs

*/

initialize$srbs:

procedure public;

This routine must be called before any svc is

declare srbjvect (8) dword at (00400h):

srb$vect{(0)
srb$vect(1)
srb$vect(2)
srb$vect(3)
srb3vect(y)
srb$vect(5)
srb$vect(6)
srbgvect(7)

end initialize$srbs;

sve$abort:

[LI L U | I T T I 20 I |

intel$ptritodlassptr
intel$ptrito$lasspir
intel$ptrito$lasiptr
intel$ptritoslassptr
intel$ptritoslassptr
intelptrto$lastptr
intel$ptritosdlassptr
intel$ptritoslassptr

procedure publie;

call svex (1fh):

end svcipabort;

svedexit:

procedure public;

call svex (iah};

end svepexit;

sve$lastdconi:

procedure byte public;

call svex (1fh);
return srb(index).count(1):

end svecplastdconiy

(@srb{0));
(8srb(1));
{Bsrb(2));
(8srb(3));
{@srb(4)):
{(@srb(5));
{@srb(6));
(8srb(7));

used!

APPENDIX C

APPENDIX C

sve$logéerror:
procedure public:
call svex (09h);

end svejlogierror;

sve$read$clock:
procedure word public;

declare w word;

eall svex (1fh):

high(w) = srb(index).count(0); /%
low{w) = srb(index).count{1):
return w;

end svec$read$clock:

avc$assign$channel ;
procedure (¢, b) public:

declare c byte, b pointer;
call svexeb (10h, e, D)

end svc$assignfchannel;

svecdcreateffile:
procedure (e, b) public:

declare ¢ byte, b pointer;
call svexecb (90h, e, b):

end svcicreateffile;

sve$opens for$read:
procedure (¢, b) public;

declare ¢ byte, b pointer;
call svexcb (30h, c, b);

end sve$open$forgread;

86/PL ROUTINES FOR SVC'S 33

reverse of 8086 natural order! #/

34 USING 86/PC APPENDIX C
svciseek$relstos:

procedure (¢, o) dword public;

declare ¢ byte, o dword;

call svexed (44h, ¢, 0);
return las}longdto$intelddword (srblindex).bufp);

end svoclseek$relitosl:

svchload$ovl:
procedure {b) pointer public;

declare b pointer;
declare d based * dword:

call svexb (17h, b);
return las$ptrtodinteldptr ((@srb(index).count)->d);

end svelload$ovl:

svchread$asctgo:
procedure (¢, m, b) word public;

declare c byte, m word, b pointer;

declare w word;

call svexelb (81h, ¢, m, b);

high{w) = srb(index).comt{(Q); /* reverse of 8086 natural order! ¥/
low(w) = srb(index).count(1);

return w;

end svc$read$ascdgo;

svedreadfpasciwait:
procedure (c, m, b) word public;

declare ¢ byte, m word, b pointer;

declare w word:

call svexclb (01h, e, m, b):

high(w) = srb(index).count(0); /* reverse of 8086 natural order! ¥/

low{w) = srb{index).count(1)
return w;

end sve$read$aschwalit;

APPENDIX C 86/PL ROUTINES FOR SVC'S

sve$write$ascedgo:

procedure (¢, m, b) word public;
declare ¢ byte, m word, b pointer;
declare w word;

call svexelb (82h, ¢, m, b):

high(w) = srb{index).count(0); /* reverse of 8086 natural order!
low(w) = srb{index).count(1};
return w;

end svcdwrite$ascedgo;

svedwritepasc$wait:

procedure (¢, m, b) word public;
declare c byte, m word, b pointer;
declare w word;

call svexelb (02h, ¢, m, b):

high{w) = srb(index).count(0); /* reverse of 8086 natural order!
low(w) = srb(index).count(1); .
return w;

end svedwritedaschwait;

svego:

/%

procedure;
declare a byte;

The next line is not necessary; it simply transfers the function
value through a register (AL). It is useful during debugging on
the 8540: 1if the user sets a breakpoint on the "if (mode < 2)3"
statement, the function value is immediately visible in the
register display (one need not find the proper address in the srb
vector and execute a debugger D command)., It is most useful when
index is a variable rather than a literal. */

a = srb{index).fn;

if (mode < 2):

call svealll (sve(index)):
else;

ecall sveall? (sve(index)):
endif;

end svego;

35

®/

®/

36 USING 86/PC - APPENDIX C

SVex:
procedure (fn);
declare fn byte;
arb(index).fn = fn;
call svego;

end svex;

svexbe

procedure (fn, b);

declare fn byte, b pointer;

srb(index).fn = fn;

srb(index) .bufp = intel$ptritodlasiptr (b);

call svcgo;

end svexb;

svexeb:
procedure (fn, ¢, b);

declare fn byte, c byte, b pointer;

srb{index).fn = fn;

srb{index) .chan = ¢;

srb(index) .bufp = intel$ptritoslasiptr (b);
call svego;

end svexch;

svexed:
procedure (fn, ¢, 0);

declare fn byte, ¢ byte, o dword;
arb(index).fn = fn;

arb(index).chan = ec;

srb(index) .bufp = inteljdwordtolas$long (o)}
c¢all svego;

end svexed;

APPENDIX C 86/PL ROUTINES FOR 3SVC'S 37

svexelb:
procedure {fn, ¢, m, b);

declare fn byte, ¢ byte, m word, b pointer;

srb(index) .fn = fn;

srb(index).chan = c;

srb(index) .1th(0) = high (m); /% reverse of 8086 natural order! */
srb(index).1th(1) = m;

srb(index) .bufp = intel$ptrito$las$ptr (b);

call svego;

end svexclb;

avexplb:
procedure (fn, x, 1, b);

declare fn byte, x word, 1 word, b pointer;

srb(index).fn = fn;
srb{index) .count(Q)
srb(index) .count{1)
srb(index).1th(0) = high(1); /% reverse of 8086 natural order! ¥/
srb(index).1th(1) H :
srb(index) .bufp = intel$ptritos$las¢ptr (b);

call svcgo;

high(x): /% reverse of 8086 natural order! #/
X5

L]
]

end svexplb;

end;

e

APPENDIX D TRACKING DOWN TRUNCATION ERRORS 39

D. TRACKING DOWN TRUNCATION ERRORS

This chapter gives an example of tracking down the cause of linker
truncation errors,.

An 8086 application, bj.86t2, is composed of a Pascal driver program,
several B6/PL support modules, and the Pascal support libraries. The 86/PL
modules are all compiled with

B86pc ~L ~t name.p

There is no -M switch, 30 this is the "=mall" mcdel of computation; there are
no optimization switches, s0 only default optimization is performed. The
application is linked with the command

uP=8086; export uP; link -d -0 bj.86t2 ~c bj.ic2

(bj.ic2, the linker command file, appears in Fig. D.1}. The linker responds
with the errors in Fig. D.2. The warning message is innocuous. There are no
other messages, and bj.86t2 (the load module) is not produced.

-0 bjb.io

-D STKBASEQQ=0FFFFH

=D HEAPBASEQQ=0D80CH

=D SVCLOCZIZ=0FFFOH

m INSTRQQ.ROM=060H-OTFFFH

m CONSTQQ.ROM=08000H-08FFFH

m DATAQQ.RAM=09000H-0DTFFH
SRBVQQ. RAM=0U4QH-05FH
c1ass=INSTRQQ range INSTRQQ.ROM
clasa=CONSTQQ range CONSTQQ.ROM
¢lass=DATAQQ range DATAQQ.RAM
¢lass=SRBVQQ range SRBVQQ.RAM
bjdrv.po

bjsup.86t

blackj.86t

CODEBASEQQ=060H
DATABASEQQ=09000H
/1ib/8086/pas.hiio.scsd
/1ib/8086/pas.fp8b6,scsad
/1ib/8086/pas.rts.scsd
/1ib/8086/pas.err.scsd
/1ib/8086/pas.posi.scad
/1ib/8086/pas.conv,scad
PASCAL_BEGIN

1
B

LLLLLLLL G666 LELL

Fig. D.1 Linker command file

40 USING 86/PC APPENDIX D

link:119 (W) Processor changed from B8086/87/88/186

to 8086/8088
link:115 (E) Truncation error at 96
link:115 (E} Truncation error at Bl
1link:115 (E) Truncation error at E1
link:115 (E) Truncation error at FT
1ink:115 (E) Truncation error at 835E
{8 more messages in ascending address order)
1ink:115 {E) Truncation error at 83F0
link:1t5 (E) Truncation error at 348
link:115 (E) Truncation error at 394
1ink:115 (E) Truncation error at 3AF
link:115 (E) Truncation error at 432
(80 more messages in ascending address order)
1ink:115 (E) Truncation error at Foa

Fig. D.2 Linker error messages

What causes the truncation errors? From the lines

-m INSTRQQ.ROM=060H-07FFFH

-m CONSTQQ.ROM=08000H-08FFFH

=L ¢lass=INSTRQQ range INSTRQQ.ROM
=L ¢lass=CONSTQQ range CONSTQQ.ROM

in Fig. D.1, we see that the truncation errors appear in code segments
(instruction sections) and constant segments. We will attack some of the code
segment errors.

Which modules provoke truncation errors? There being no load module, we
must examine the input object modules in the order they were linked. From
Fig. D.1, we determine that the madule order is

bj6.io0
bjdrv.po
bjsup.86t
blackj.86t
(libraries)

We can probably safely ignore the libraries for now. We enter the command
lstr -0 -s bj6.io bjdrv.po bjisup.86t blackj.86t | grep ' § !

The 1lstr command extracts all the symbel information from the object files;
the -0 switch identifies each symbol by its file, and the -s switch appends
the section length to section information lines. The gréﬁ_command copies
every input line containing ' S ' (the "™section information™ code) to its
output, The pipe symbol (the vertical bar) indicates that the output of 1lsir
is to be the input to grep. The output appears in Fig. D.3. In general,
segments I.name are code segments, C.name are constant segments, and D.name

APPENDIX D TRACKING DOWN TRUNCATION ERRORS 41

bj6.ic: 0x00000000 S 2BJ6IO 0x00000000

bj6.ic: 0x00000000 S ICS,INSTR 0x00000032

bjdrv.po: 0x00000000 S C.BJ 0x00000022

bjdrv.po: 0x00000000 S D.BJ 0x0000004Y4

bjdrv.po: 0x00000000 S I.BJ 0x00000QBC

bjsup.86t: 0x00000000 S C,.SUPPORT 0x00000000
bjisup.86%: 0x00000000 S D,SUPPORT 0x00000026
bjsup.86t: Ox00000000 S I.SUPPORT 0x000001CC
blackj.86t: 0x00000000 S C.BLACKJACKBODY 0x000005CA
blackj.86t: 0x00000000 S D.BLACKJACKBODY OxCOOOQUAE
blackj.86t: 0x00000000 S I,BLACKJACKBODY Ox00000BF8

Fig. D.3 Section information

are data segments. ICS,INSTR is alsc a code segment (INSTR is the clue), The
code segments have been placed in the address range [60H, T7FFFH], in the
specific memory address ranges

ICS.INSTR [60H, ({ 60H + 32 - 1) = 91H)]

I.BJ [92H, ({ 92H + OBCH - 1) = 14DH)]

I.SUPPORT [14EH, ((18EH + 1CCH - 1) = 319H)]
I.BLACKJACKBODY [31aH, ((31AH + OBF8H - 1) = OF11H)]

Had bj.86t2 been produced, we could have entered the command
lstr -3 bj.86%2 | grep * S !

The resulting output would look like Fig., D.3, but without file names (there
is no -o switch), and with appropriate physical addresses rather than
relocatable 0's for the segment addresses. This would have avoided a bit of
hex arithmetic. '

The first four code segment errors are in bjdrv.pc, the Pascal driver;
the remaining 85 code segment errors are in blackj.86t, an 86/PL support
module. We choose to attack the 86/PL module.

We recompile blackj.p (the source for blackj.86t) with
86pc -1 -a -t blackj.p >blackj.s
Observe that

o The model of computation in the recompilation must mateh that in the

original compilation (since we want the "small"™ model, we use no -M
switeh).

e The optimization in the recompilation must match that in the original
compilation (since we performed no explicit optimization originally,
we use no optimization switches).

42 USING 86/PC APPENDIX D
@ The -1 switch should appear, so that a statement-numbered listing is
produced.

® The -a switch should appear, so that an assembly-language listing is
produced,

& Standard output should be redirected to a file, so that the listings
are retained (we redirect it to blackj.s).

The assembly listing uses relative addresses; the corresponding values
for the errors are

phys relative

3484 (3484 ~ 31AH) = 2EH
394H (394H - 31AH) = TAH
3AFH (3AFH - 31AH) = 9SH
4324 (4324 - 31AH) = 118H

Part of the assembly-language listing appears in Fig. D.4, with the offending
addresses and relevant statement numbers underscored. Note that the address
in a truncation error message is the address of the relocatable datum; it is
neither the address of the instruction or statement containing the datum, nor
the target address. The problem instructions load the 8086 AX register with
the "group-relative offset"” of the variable name. The "group-relative offset"
of x is the difference of the physical address of x and the value of the base
symbol for the group (DATABASEQQ for dgroup, and CODEBASEQQ for cgroup). The
offset must lie in the range [0, OFFFFH] (it must be nonnegative}. Why does
the linker find the group-relative offset of name offensive?

Part of the statement-numbered listing appears in Fig. D.5, with relevant
statement numbers and source statements underscored. Note that not every
statement in the assembly-language listing had a statement-number comment; the
reference to name may be a few statements further down in the listing.

Notice that name is in a constant segment (it is initialized with the
data attribute). Why should taking the "group-relative" address of a constant
cause a problem? The answer lies in the following lines from Fig. D.1.

-m CONSTQQ.ROM=08000H-08FFFH

=L ¢lass=CONSTQQ range CONSTQQ.RCM
-D DATABASEQQ=09000H

They indicate that the value of

({physical address of name) - {(value of DATABASEQQ))
is negative! A value was assigned to DATABASEQQ which appeared correct for
the data segments, but which ignored the fact that it was necessary for other
segments to be addressable from DATABASEQQ. Changing

-D DATABASEQQ=09000H

to

APPENDIX D

0020

0020 55

0021 8bec

0023 R F£606000401
0028 7503

002a e90700
002d R b8eal1
0030 50

0031 X 80000
004b Bb5e0l4
006f R f606000401
0074 7503

0076 90700
0079 R b8eald1
007c 50

007d X 80000
0080 R a1a00y
0083 &d

0084 c20200
0087

0087

0087 55

0088 8bec

008a R 606000401
008f 7503

0091 e90700
0094 R b8£201
0097 50

0098 X e80000
010d

010d R 606000401
0112 7503

0114 90700
0117 R b8f201
011a 50

011b X e80000
011e 5d

o11f c20600
0122

TRACKING DOWN TRUNCATION ERRORS 43

getnum PROC NEAR
PUSH BP
MOV BP,SP
; statement #1784, line #166
TEST tracev,1h
JINZ $+5
JMP a0
MOV AX,offset dgroup:name
PUSH AX
CALL trace
i Statement #181, line #173
e3: MoV BX,(BPl.cp
ay ; TEST tracev, 1h
JINZ $+5
JMP s
MOV AX,offset dgroup:name
PUSH AX
CALL untrace
; statement #188, line #180
85 MOV AX,num
POP BP
RET 2h
getnum ENDP
putnum PROC NEAR
PUSH BP
- MOV BP, 3P
7 Statement #206, line #198
TEST tracev,1h
JNZ $45
JMP @6
MOV AX,offset dgroup:name
PUSH AX
CALL trace
s statement #224, line #216
a12:
810: TEST tracev, th
JNZ $+5
JMP 3
MOV AX,offset dgroup:name
PUSH AX
CALL untrace
: statement #228, line #220
813: POP BP
RET 6h
putnum ENDP

Fig. D.4 Partial assembly-language listing

44 USING 86/PC APPENDIX

164 156 2 getnum:

165 157 2 procedure {cp) word publiec;

172 164 3 declare name (¥*) byte data ('getnum', eos):
173 165 3

1748 166 3 if tracev;

175 167 3 call trace (dot$ld name);

176 168 3 endif;

181 173 3 do while (¢ - '0') <= 9;

182 174 y num = num * 10 + (c - '0');
183 175 y cp=zcp+ 13

184 176 4 end;

185 177 3 if tracev:

186 178 3 call untrace (dot$l4 name);
187 179 3 endif;

190 182 3 end getnum;

194 186 2 putnum:

195 187 2 procedure (num, where, size) publics
204 196 3 declare name (¥*) byte data ('putnum', eos);
205 197 3

206 188 3 if tracev; :
207 199 3 call trace (dot$ld name):

208 200 3 endif;

224 216 3 if tracev;

225 217 3 call untrace (dot$d name);
226 218 3 endif;

227 219 3

228 220 3 end putnum:

Fig. D.5 Partial statement-nmumbered listing

-D DATABASEQQ=08000H

cures the problem.

Addressability 1, 2, 6
Addressability defined 1
Assigning an SVC channel 14, 33

Cgroup 5, 42

Class names 6, 7, 8, 17

CODEBASEQQ 6, 17

CODEBASEQQ defined 5

Compact model 2, 24

Creating a file with an SVC 14, 33
CS register &

DATABASEQQ 6, 7, 17
DATABASEQQ defined 5
Dgroup 5, 42

DS register 6, 23, 25

Emulaticon mode 12, 15, 27, 28, 29,
ENDREL 18
ENDREL defined 6

Getting parameters with SVC's 14
Group-relative offset H2
Groups 5, 42

HEAPBASEQQ 6, 7, 17
HEAPBASEQQ defined 6

Large model 2, 2i
Loading an overlay with an SVC 13,

Medium model 2, 24

MEMCRY array 6, 25

Memory range names 8
Miscellanecus 3VC's 13, 32, 33

Named memory ranges 8§
Naming convention 17

Opening files with SVC's 14, 33
Parameter fetching with SVC's 14

Reading files with SVC's 14, 34
Rewriting files with SVC's 14

Section names 17
Seeking on files with 3VC's 14, 33
Small model 5, 7, 11, 24

INDEX

35

34

INDEX 45

46 USING 86/PC

SS register 6, 7

STKBASEQQ 6, 7, 17

STKBASEQQ defined 6

SVC to assign a channel 14, 33
SVC to create a file 14, 33
3VC to load an overlay 13, 34

SVC's -- miscellaneous 13, 32, 33
SVC's to get parameters 14

SVC's to open files 14, 33

SVC's to read files 14, 34

SVC's to rewrite files 14

SVC's to seek on files 14, 33
SVC's to write files 14, 34, 35

Trunecation error 17, 18, 39

Writing files with SVC's 14, 34, 35

Osine, Farber % Gordon, Inc.

750 East Green Street . . . Pasadena, California 91101
(818) 449-3070 ... Telex 295316 CFG UR

